tìm số tự nhiên a nhỏ nhất sao cho chia a cho 3, cho 5, cho 7, đc số dư theo thứ tự 2, 3, 4
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Gọi số đó là n
Theo bài ra ta có:
\(n:11\)dư 6 \(\Rightarrow n-6⋮11\Rightarrow n-6+33⋮11\Leftrightarrow n+27⋮11\)
\(n:4\)dư 1 \(\Rightarrow n-1⋮4\Rightarrow n-1+28⋮4\Leftrightarrow n+27⋮4\)
\(n:19\)dư 11 \(\Rightarrow n-11⋮19\Rightarrow n-6+38⋮19\Leftrightarrow n+27⋮19\)
\(\Rightarrow n+27⋮11;4;9\)
Có: \(n+27\)nhỏ nhất \(\Leftrightarrow n+7=BCNN\left(11;4;9\right)=836\)
\(\Rightarrow n=836-27=809\)
Vậy số tự nhiên nhỏ nhất cần tìm là: \(809\)
Giải : a = 3m + 2 ( m € N ) \(\Rightarrow\)2a = 6m + 4 , chia 3 dư 1
a = 5n + 3 ( n € N ) \(\Rightarrow\)2a = 10n + 6 , chia 5 dư 1
a = 7p + 3 ( p € N ) \(\Rightarrow\)2a = 14p + 8 , chia 7 dư 1
Do đó : 2a - 1 € BC ( 3 , 5 , 7 ) . Để a nhỏ nhất thì 2a - 1 là BCNN ( 3 , 5 , 7 ) .
BCNN ( 3 , 5 , 7 ) = 105
2a - 1 = 105
2a = 106
a = 53 .
Bấm vào đây bạn nhé, mong nó sẽ giúp ích cho bạn: Câu hỏi của Vũ Mai Phương - Toán lớp 6 - Học toán với OnlineMath
theo bài ra ta có:
a+1 chia hết cho 3
a+1 chia hết cho 5
a+1 chia hết cho 7
từ các điều trên\(\Rightarrow\) a+1chia hết cho 3;5;7
\(\Rightarrow\) a +1 \(\in\) BC(3;5;7)
Vì (3;5;7)=1
\(\Rightarrow\) BCNN|(3;5;7)=3.5.7=105
\(\Rightarrow\)BC(3;5;7)=B(105)=\(\left\{0;105;210;.....\right\}\)
Mà a nhỏ nhất khác 0\(\Rightarrow a+1\) nhỏ nhất khác 0
\(\Rightarrow a+1\) =105
a = 105 -1
a = 104
Vậy a=104