\(P=\frac{x^2}{y-1}+\frac{y^2}{x-1}\)Cho x,y>1 Tìm Min
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
Đặt \(\hept{\begin{cases}2^x=a\\2^y=b\end{cases}}\) thì ta có: \(A=\frac{1+ab}{1+a^2}+\frac{1+ab}{1+b^2}\)
Ta cần chứng minh \(2\) là GTNN của A (khi x=1,02171...;y=1,02171... và x=y=1,04019...)
\(\Leftrightarrow\left(1+ab\right)\left(\frac{1}{1+a^2}+\frac{1}{1+b^2}\right)\ge2\)
Và điều này tương đương với \(\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(a^2+1\right)\left(b^2+1\right)}\ge0\)
Cái này đúng nếu \(ab\ge1\)
áp dụng bất đẳng thức Cauchy ngược dấu cho 2 số không âm ta có
\(\sqrt{\left(x-1\right).1}\le\frac{x-1+1}{2}=\frac{x}{2}\Rightarrow\frac{x}{\sqrt{x-1}}\ge2.\)
\(\sqrt{\left(\frac{y}{\sqrt{2}}-\sqrt{2}\right).\sqrt{2}}\le\frac{\frac{y}{\sqrt{2}}-\sqrt{2}+\sqrt{2}}{2}=\frac{y}{2\sqrt{2}}\Rightarrow\frac{y}{\sqrt{y-2}}\ge2\sqrt{2}.\)
\(\sqrt{\left(\frac{z}{\sqrt{3}}-\sqrt{3}\right).\sqrt{3}}\le\frac{\frac{z}{\sqrt{3}}-\sqrt{3}+\sqrt{3}}{2}=\frac{z}{2\sqrt{3}}\Rightarrow\frac{z}{\sqrt{z-3}}\ge2\sqrt{3}\)
\(\Rightarrow A\ge2+2\sqrt{2}+2\sqrt{3}\)
Vậy Min \(A=2+2\sqrt{2}+2\sqrt{3}\)
\(\Leftrightarrow\hept{\begin{cases}x-1=1\\\frac{y}{\sqrt{2}}-\sqrt{2}=\sqrt{2}\\\frac{z}{\sqrt{3}}-\sqrt{3}=\sqrt{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}\left(tmđk\right)}\)
2, rút gọn B=x^2/(y-1)+y^2/(x-1)
AM-GM : x^2/(y-1)+4(y-1) >/ 4x ; y^2/(x-1)+4(x-1) >/ 4y
=> B >/ 4x-4(y-1)+4y-4(x-1)=4x-4y+4+4y-4x+4=8
minB=8
Câu 1:
Áp dụng BĐT AM-GM ta có: \(x+1\ge2\sqrt{x}\)
\(\Rightarrow x+1+x+1\ge x+2\sqrt{x}+1\)
\(\Rightarrow2x+2\ge\left(\sqrt{x}+1\right)^2\left(1\right)\)
Tương tự cũng có: \(2y+2\ge\left(\sqrt{y}+1\right)^2\left(2\right)\)
Nhân theo vế của \(\left(1\right);\left(2\right)\) ta có:
\(\left(2x+2\right)\left(2y+2\right)\ge\left(\sqrt{x}+1\right)^2\left(\sqrt{y}+1\right)^2\ge16\)
\(\Rightarrow4\left(x+1\right)\left(y+1\right)\ge16\Rightarrow\left(x+1\right)\left(y+1\right)\ge4\)
Lại áp dụng BĐT AM-GM ta có:
\(\left(x+1\right)+\left(y+1\right)\ge2\sqrt{\left(x+1\right)\left(y+1\right)}\ge4\)
\(\Rightarrow x+y\ge2\). Giờ thì áp dụng BĐT Cauchy-Schwarz dạng Engel ta có:
\(A=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\ge2\)
Đẳng thức xảy ra khi \(x=y=1\)
+) \(P=\frac{x}{\sqrt{1-x^2}}+\frac{y}{\sqrt{1-y^2}}=\frac{x^2}{x\sqrt{1-x^2}}+\frac{y^2}{y\sqrt{1-y^2}}\)
\(\ge\frac{\left(x+y\right)^2}{x\sqrt{1-x^2}+y\sqrt{1-y^2}}=\frac{1}{x\sqrt{1-x^2}+y\sqrt{1-y^2}}\)
+) \(A=x\sqrt{1-x^2}+y\sqrt{1-y^2}\)
\(A^2=x^2+y^2-y^4-x^4+2xy\sqrt{\left(1-x^2\right)\left(1-y^2\right)}\)
+) \(B=x^2+y^2-x^4-y^4=x^2+\left(1-x\right)^2-x^4-\left(1-x\right)^4\)
\(-\frac{B}{2}+\frac{3}{16}=x^4-2x^3+2x^2-x+\frac{3}{16}=\left(x^2-x+\frac{3}{4}\right)\left(x-\frac{1}{2}\right)^2\ge0\)
\(\Leftrightarrow B\le\frac{3}{8}\)
+) \(A^2\le\frac{3}{8}+2\frac{\left(x+y\right)^2}{4}\sqrt{1-x^2-y^2+x^2y^2}\)
\(\le\frac{3}{8}+\frac{1}{2}\sqrt{1-\frac{\left(x+y\right)^2}{2}+\frac{\left(x+y\right)^4}{16}}=\frac{3}{8}+\frac{1}{2}\sqrt{1-\frac{1}{2}+\frac{1}{16}}=\frac{3}{8}+\frac{1}{2}\cdot\frac{3}{4}=\frac{3}{4}\)
\(\Rightarrow A\le\frac{\sqrt{3}}{2}\)
+) \(P=\frac{1}{A}\ge\frac{2\sqrt{3}}{3}\)
Vậy \(P_{min}=\frac{2\sqrt{3}}{3}\)khi \(x=y=\frac{1}{2}\)
* Mình làm hơi tắt và có vẻ hơi dài
Từ điều kiện đề bài ta có: \(P=\frac{x}{\sqrt{y^2+2xy}}+\frac{y}{\sqrt{x^2+2xy}}\)
Theo Holder: \(P.P.\left[x\left(y^2+2xy\right)+y\left(x^2+2xy\right)\right]\ge\left(x+y\right)^3\)
\(\Rightarrow P^2\ge\frac{\left(x+y\right)^3}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}\) (*)
Xét: \(\frac{\left(x+y\right)^3}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}-\frac{4}{3}=\frac{\left(x+y\right)\left(x-y\right)^2}{x\left(y^2+2xy\right)+y\left(x^2+2xy\right)}\ge0\) (**)
Từ (*) và (**) suy ra: \(P\ge\frac{2}{\sqrt{3}}\)
Dấu "=" xảy ra khi x=y=1\2
\(\frac{x}{1+y^2}=x-\frac{xy^2}{1+y^2}\ge x-\frac{xy^2}{2y}=x-\frac{1}{2}xy\)
Tương tự và cộng lại:
\(A\ge x+y+z-\frac{1}{2}\left(xy+yz+zx\right)\ge x+y+z-\frac{1}{6}\left(x+y+z\right)^2=\frac{3}{2}\)
\("="\Leftrightarrow x=y=z=1\)
\(K=\frac{1}{x^2+y^2}+\frac{1}{xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\)
\(\ge\frac{4}{x^2+y^2+2xy}+\frac{1}{2.\frac{\left(x+y\right)^2}{4}}\)
\(=\frac{4}{1}+\frac{1}{2.\frac{1}{4}}=6\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Ta có \(\hept{\begin{cases}\left(x+y\right)^2=1\\\left(x-y\right)^2\ge0\end{cases}}\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)
\(xy\le\frac{\left(x^2+^2\right)}{2}\)nên \(K=\frac{1}{x^2+y^2}+\frac{2}{xy}\ge\frac{1}{x^2+y^2}+\frac{2}{x^2+y^2}=\frac{3}{x^2+y^2}\ge\frac{3}{\frac{1}{2}}=6\)
\(K_{min}=6\)dấu "=" khi \(x=y=\frac{1}{2}\)
Áp dụng BĐT cosi:
\(\frac{x^2}{y-1}+4\left(y-1\right)\ge4x\)
\(\frac{y^2}{x-1}+4\left(x-1\right)\ge4y\)
Cộng 2 BĐT trên
=> \(P\ge8\)
vậy MinP=8 khi \(\hept{\begin{cases}\frac{x^2}{y-1}=4\left(y-1\right)\\\frac{y^2}{x-1}=4\left(x-1\right)\end{cases}}\)=> \(x=y=2\)