Cho tứ giác ABCD có góc A = 3 lần góc C, góc B = 2 lần góc C - 15 độ. Tính số đo các góc tứ giác ABCD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do A, B, C, D theo thứ tự lập thành một cấp số cộng nên ta có:
B = A + d; C = A + 2d; D = A + 3d.
Mặt khác: A + B + C + D = 360°
⇔ A + A + d + A + 2d + A + 3d = 360°
⇔ 4A + 6d = 360°
⇔ 2A + 3d = 180°
Ta lại có: A + 2d = 5A ⇔ d = 2A
⇒ 8A = 180°
⇒ A = 22,5° và d = 45°
⇒ B = 67,5°, C = 112,5°, D = 157,5°.
Tứ giác ABCD có : góc A + góc B + góc C + góc D = 3600
(góc A + góc B) + (góc A - góc B) = 1050 + 150
2.góc A = 1200 => góc A = 600 => góc B = 1050 - 600 = 450
góc C + góc D = 3600 - (góc A + góc B)
2.góc D + góc D = 3600 - 1050
3.góc D = 2550 => góc D = 850 => góc C = 850.2 = 1700
A + B = 1050
A - B = 150
A = (1050 + 150) : 2 = 600
B = (1050 - 150) : 2 = 450
Tứ giác ABCD có:
A + B + C + D = 3600
600 + 450 + C + D = 3600
C + D = 3600 - 1050
C + D = 2550
\(C=2D\Rightarrow\frac{C}{2}=\frac{D}{1}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{C}{2}=\frac{D}{1}=\frac{C+D}{2+1}=\frac{255^0}{3}=85^0\)
\(\frac{C}{2}=85^0\Rightarrow C=85^0\times2=170^0\)
\(\frac{D}{1}=85^0\Rightarrow D=85^0\)
Vậy \(A=60^0;B=45^0;C=170^0;D=85^0\)
Cho hình thang ABCD (AB//CD) có A= 50 độ, C= 2 lần góc B . Tính số đo các góc tứ giác ABCD
đó ạ
1: Đặt góc A=a; góc B=b; góc C=c; góc D=d
Theo đề, ta có: a/1=b/2=c/3=d/4 và a+b+c+d=360
Áp dụng tính chất của DTSBN, ta được:
a/1=b/2=c/3=d/4=(a+b+c+d)/(1+2+3+4)=360/10=36
=>a=36; b=72; c=108; d=144
2:
góc C+góc D=360-130-105=230-105=125
góc C-góc D=25 độ
=>góc C=(125+25)/2=75 độ và góc D=75-25=50 độ
3:
góc B=360-57-110-75=118 độ
số đo góc ngoài tại B là:
180-118=62 độ
a) Vì AB//CD, ta có góc ACD = góc BCD = 180 - góc D = 180 - 60 = 120 độ.
Vì AB//CD, ta có góc ACD = góc BAD.
Vậy số đo góc A là 120 độ.
b) Gọi góc BCD là x độ.
Theo giả thiết, góc B phần góc D = 4/5, ta có:
góc B = (4/5) * góc D
= (4/5) * 60
= 48 độ.
Vì AB//CD, ta có góc BCD = góc BAD.
Vậy góc BAD = góc BCD = x độ.
Vì tứ giác ABCD là tứ giác lồi, tổng các góc trong tứ giác ABCD là 360 độ.
Ta có: góc A + góc B + góc C + góc D = 360 độ.
Vì góc D = 60 độ, góc A = 120 độ và góc B = 48 độ, ta có:
120 + 48 + góc C + 60 = 360
góc C = 360 - 120 - 48 - 60 = 132 độ.
Vậy số đo góc B là 48 độ và số đo góc C là 132 độ.
* Ib = bài 4