Bài 14: Tìm x, biêt:
\(4)27x^2\left(x+1\right)-\left(3x+1\right)^3=-8\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=15\)
\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6\left(x^2+2x+1\right)=15\)
\(\Leftrightarrow-6x^2+12x+19+6x^2+12x+6=15\)
\(\Leftrightarrow24x+25=15\)
\(\Leftrightarrow24x=-10\)
hay \(x=-\dfrac{5}{12}\)
b) Ta có: \(2x^3-50x=0\)
\(\Leftrightarrow2x\left(x-5\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=5\\x=-5\end{matrix}\right.\)
c) Ta có: \(5x^2-4\left(x^2-2x+1\right)-5=0\)
\(\Leftrightarrow5x^2-4x^2+8x-4-5=0\)
\(\Leftrightarrow x^2+8x-9=0\)
\(\Leftrightarrow\left(x+9\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-9\\x=1\end{matrix}\right.\)
d) Ta có: \(x^3-x=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\\x=-1\end{matrix}\right.\)
e) Ta có: \(27x^3-27x^2+9x-1=1\)
\(\Leftrightarrow\left(3x\right)^3-3\cdot\left(3x\right)^2\cdot1+3\cdot3x\cdot1^2-1^3=1\)
\(\Leftrightarrow\left(3x-1\right)^3=1\)
\(\Leftrightarrow3x-1=1\)
\(\Leftrightarrow3x=2\)
hay \(x=\dfrac{2}{3}\)
a) \(27x^3+27x^2+9x+1=64\)
\(\Rightarrow27x^3+27x^2+9x-63=0\)
\(\Rightarrow27x^3-27x^2+54x^2-54x+63x-63=0\)
\(\Rightarrow27x^2\left(x-1\right)+54x\left(x-1\right)+63\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(27x^2+54x+63\right)=0\)
\(\Rightarrow\left(x-1\right).9\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left(x-1\right)\left(3x^2+6x+7\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\3x^2+6x+7=0\end{matrix}\right.\)
Mà ta có:
\(3x^2+6x+7\)
\(=3\left(x^2+2x+\dfrac{7}{3}\right)\)
\(=3\left(x^2+2x+1-1+\dfrac{7}{3}\right)\)
\(=3\left(x+1\right)^2+4\)
Vì \(3\left(x+1\right)^2\ge0\) với mọi x
\(\Rightarrow3\left(x+1\right)^2+4\ge4\)
\(\Rightarrow3x^2+6x+7\) vô nghiệm
\(\Rightarrow x-1=0\)
\(\Rightarrow x=1\)
b) \(\left(x-2\right)^3-x^2\left(x-6\right)=4\)
\(\Rightarrow x^3-6x^2+12x-8-x^3+6x^2=4\)
\(\Rightarrow12x-8=4\)
\(\Rightarrow12x=12\)
\(\Rightarrow x=1\)
c) \(\left(x-1\right)^3-\left(x+3\right)\left(x^2-3x+9\right)+3\left(x-2\right)\left(x+2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-\left(x^3+3^3\right)+3\left(x^2-2^2\right)=2\)
\(\Rightarrow x^3-3x^2+3x-1-x^3-9+3x^2-12=2\)
\(\Rightarrow3x-22=2\)
\(\Rightarrow3x=24\)
\(\Rightarrow x=8\)
Để giải phương trình, ta sẽ thực hiện các bước sau: Bước 1: Giải các phép tính trong phương trình. 32x^(-1) + 2.9x^(-1) = 405(13)^(-1) + 5.(13)^2 + 1 = 1493(31)^(-1) + 5.(31)^2 + 1 = 9314(35)^(-1) Bước 2: Rút gọn các số hạng. 32x^(-1) + 2.9x^(-1) = 405/13 + 5.(13)^2 + 1 = 1493/31 + 5.(31)^2 + 1 = 9314/35 Bước 3: Đưa các số hạng về cùng mẫu số. 32x^(-1) + 2.9x^(-1) = (405/13).(31/31) + 5.(13)^2 + 1 = (1493/31).(13/13) + 5.(31)^2 + 1 = 9314/35 Bước 4: Tính toán các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/13.(31) + 5.(13)^2 + 1 = 1493.(13)/31.(13) + 5.(31)^2 + 1 = 9314/35 Bước 5: Tính tổng các số hạng. 32x^(-1) + 2.9x^(-1) = 405.(31)/403 + 5.(13)^2 + 1 = 1493.(13)/403 + 5.(31)^2 + 1 = 9314/35 Bước 6: Đưa phương trình về dạng chuẩn. 32x^(-1) + 2.9x^(-1) - 9314/35 = 0 Bước 7: Giải phương trình. Để giải phương trình này, ta cần biến đổi nó về dạng tương đương. Nhân cả hai vế của phương trình với 35 để loại bỏ mẫu số. 35.(32x^(-1) + 2.9x^(-1) - 9314/35) = 0 1120x^(-1) + 101.5x^(-1) - 9314 = 0 Bước 8: Tìm giá trị của x. Để tìm giá trị của x, ta cần giải phương trình này. Tuy nhiên, phương trình này không thể giải được vì x có mũ là -1.
Với \(x=0\) không phải nghiệm
Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:
\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)
\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)
Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý
b.
Đặt \(x+3=t\)
\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)
\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)
\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)
\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)
Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.
\(b,\left(x^2+1\right)^2+3x\left(X^2+1\right)+2x^2=0\)
đặt x^2+1 là y ta đc
\(y^2+3xy+2x^2=0< =>y^2+2xy+xy+2x^2=0< =>y\left(y+2x\right)+x\left(y+2x\right)=0< =>\left(y+x\right)\left(y+2x\right)=0< =>\left[{}\begin{matrix}y=-x\left(1\right)\\y=-2x\left(2\right)\end{matrix}\right.\)
giải 1 ta có;\(x^2+1=-x< =>x^2+x+1=0< =>x^2+2.\dfrac{1}{2}x+\left(\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0< =>\left(x+\dfrac{1}{2}\right)^2=-\dfrac{3}{4}\left(vônghiemej\right)\)
giải 2:\(x^2+1=-2x< =>x^2+2x+1=0< =>\left(x+1\right)^2=0< =>x+1=0< =>x=-1\left(nhận\right)\)
vậy......
b)Cách khác:\(\left(x^2+1\right)^2+3x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)^2+x\left(x^2+1\right)+2x\left(x^2+1\right)+2x^2=0\)
\(\Leftrightarrow\left(x^2+1\right)\left(x^2+x+1\right)+2x\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\left(x^2+x+1\right)\left(x^2+2x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x+1=0\left(loai\right)\\x^2+2x+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
\(27x^2\left(x+1\right)-\left(3x+1\right)^3=-8\)
\(\Rightarrow27x^3+27x^2-27x^3-27x^2-9x-1=-8\)
\(\Rightarrow-9x-1=-8\)
\(\Rightarrow-9x=-7\)
\(\Rightarrow x=\frac{7}{9}\)
\(27x^2\left(x+1\right)-\left(3x+1\right)^3\)
\(27x^3+27^2-27x^3-27x^2-9x-1=-8\)
\(-9x-1=-8\)
\(-9x=-7\)
\(x=\frac{7}{9}\)