Tìm các giá trị của x biết:
a. 6(x-2)-3(x-1) > 0
b. \(\frac{x-7}{2}< 0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2\cdot2^2\cdot2^3\cdot2^4\cdot\cdot\cdot2^x=32768\)
\(\Leftrightarrow2^{1+2+3+4+\cdot\cdot\cdot+x}=2^{15}\)
\(\Leftrightarrow1+2+3+4+..+x=15\)
\(\Leftrightarrow\)\(\frac{\left(1+x\right)x}{2}=15\)
\(\Leftrightarrow x\left(x+1\right)=30=5\left(5+1\right)\)
Vậy x=5
Bài 2:
Bậc của đơn thức là 2+5+3=10
Bài 3:
\(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\)
\(\Leftrightarrow\left|2x-\frac{1}{2}\right|=5\)
+)TH1: \(x\ge\frac{1}{4}\) thì bt trở thành
\(2x-\frac{1}{2}=5\Leftrightarrow2x=\frac{11}{2}\Leftrightarrow x=\frac{11}{4}\left(tm\right)\)
+)TH2: \(x< \frac{1}{4}\) thì pt trở thành
\(2x-\frac{1}{2}=-5\Leftrightarrow2x=-\frac{9}{2}\Leftrightarrow x=-\frac{9}{4}\left(tm\right)\)
Vậy x={-9/4;11/4}
A=\(\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
A= \(\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)=\(\frac{2x-2\sqrt{x}-\sqrt{x}+1}{x-1}=\frac{2\sqrt{x}-1}{x+1}\)
Để A=1/2 thì
\(\frac{2\sqrt{x}-1}{x+1}=\frac{1}{2}\)
nhân chéo ta đc pt \(x-4\sqrt{x}+3=0\)
giải pt ta đc x=1 (loại) hoặc x= 9
vậy x=9 TM
Để A<1 thì \(\frac{2\sqrt{x}-1}{\sqrt{x}+1}< 1\Leftrightarrow2\sqrt{x}-1< \sqrt{x}+1\Leftrightarrow\sqrt{x}< 2\)
=> x<4
vậy vs 0\(\le x< 4\) và x khác 1 TM
Mình nghĩ thế này ạ
a) Với \(x\ge0,x\ne1\)ta có: \(\frac{\sqrt{x}+1}{\sqrt{x}-1x}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{x-1}\)
\(=\frac{\sqrt{x}+1}{\sqrt{x}-1}+\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x-1}\right)}-\frac{3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
=\(\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{x+2\sqrt{x}+1+x-2\sqrt{x}+1-3\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-3\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2x-\sqrt{x}-2\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\sqrt{x}\left(2\sqrt{x}-1\right)-\left(2\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\frac{2\sqrt{x}-1}{\sqrt{x}+1}\)
Kết luận :
\(a)\frac{7}{12}x+0,75=-2\frac{1}{6}\)
\(\Rightarrow\frac{7}{12}x+\frac{3}{4}=-\frac{13}{6}\)
\(\Rightarrow\frac{7}{12}x=-\frac{13}{6}-\frac{3}{4}\)
\(\Rightarrow\frac{7}{12}x=-\frac{26}{12}-\frac{9}{12}\)
\(\Rightarrow\frac{7}{12}x=-\frac{35}{12}\)
\(\Rightarrow x=-\frac{35}{12}:\frac{7}{12}\)
\(\Rightarrow x=-\frac{35}{12}.\frac{12}{7}\)
\(\Rightarrow x=-5\)
\(b)-1< \frac{x}{4}< \frac{1}{2}\)
\(\Rightarrow-\frac{4}{4}< \frac{x}{4}< \frac{2}{4}\)
\(\Rightarrow-4< x< 2\)
\(\Rightarrow x\in\left\{-3;-2;-1;0;1\right\}\)
Chúc bạn học tốt !!!
\(\frac{7}{12}x+0,75=-2\frac{1}{6}\)
\(\frac{7}{12}x=-\frac{13}{6}-\frac{3}{4}\)
\(\frac{7}{12}x=\frac{-35}{12}\)
\(x=\frac{-35}{12}:\frac{7}{12}\)
\(x=-5\)
b) \(-1< \frac{x}{4}< \frac{1}{2}\)
\(\frac{-4}{4}< \frac{x}{4}< \frac{2}{4}\)
\(\Rightarrow-4< x< 2\)
mà \(x\in Z\) nên \(x\in\left\{-3;-2;\pm1;0\right\}\)
a) \(6\left(x-2\right)-3\left(x-1\right)=6x-12-3x+3=3x-9>0\)
\(\Leftrightarrow3x>9\Leftrightarrow x>3\)
b) \(\frac{x-7}{2}< 0\Leftrightarrow x-7< 0\Leftrightarrow x< 7\)
a, 6(x - 2) - 3(x - 1) = 6x - 12 - 3x + 3 = 3x - 8 > 0
<=> 3x > 8
<=> x > 8/3
b, (x - 7)/2 < 0
<=> x - 7 < 0
<=> x < 7
vậy_