K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1) 

a) Trong ∆ cân ABC có AH  là trung trực đồng thời là phân giác và trung tuyến

=> BAH = CAH 

Xét ∆ ABD và ∆ ACD ta có : 

AB = AC (∆ABC cân tại A) 

AD chung 

BAH = CAH (cmt) 

=> ∆ABD = ∆ACD (c.g.c)

=> BD = CD 

=> ∆BDC cân tại D 

* NOTE : Trong ∆ vuông BDH có DH < BD ( trong tam giác vuông ; cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền )

Mà DH = HG 

=> DG < DB 

=> DG ko thể = BD và DC 

b) Xét ∆ABG và ∆ACG ta có : 

AG chung

BAH = CAH (cmt)

AB = AC (cmt)

=> ∆ABG = ∆ACG (c.g.c)(dpcm)

c) Vì AH = 9cm (gt)

Mà AD = 2/3AH 

=> AD = 6cm

=> DH = 9 - 6 = 3 cm

Mà AH là trung tuyến BC 

=> BH = HC = BC/2 = 4 cm 

Áp dụng định lý Py ta go vào ∆ vuông BHD ta có 

=> BD = 5 cm

Bài 2) Áp dụng định lý Py ta go vào ∆ vuông ABC ta có : 

BC = 10 cm

b) Xét ∆ vuông ABM và ∆ vuông BMC ta có : 

BM chung 

ABM = CBM ( BM là phân giác) 

=> ∆ABM = ∆BMC ( ch - gn )

c) Vì ∆ABM = ∆BMC (cmt)

=> AM = NM 

Xét ∆ vuông APM và ∆ MNC ta có :

AM = NM (cmt)

AMP = NMC ( đối đỉnh) 

=> ∆APM = ∆MNC ( cgv - gn )

d) Vì ∆ APM = ∆MNC (cmt)

=> PM = MC 

=> ∆MPC cân tại M

Mà K là trung điểm PC 

=> MK là trung tuyến đồng thời là trung trực và là phân giác ∆PMC 

=> MK vuông góc với PC 

=> M; K thẳng hàng 

Mà BM là phân giác ABC 

=> B ; M thẳng hàng 

=> B ; M ; K thẳng hàng 

13 tháng 4 2018

ai trl trc thì mk cho hen!!!

13 tháng 4 2018

a, Xét hai tam giác ABH và tam giác ADH có

BH=HD(giả thiết)

góc BHA=góc DHA(=90 độ)

AH chung

Suy ra ABH=ADH(dpcm)

b,c,d dài qúa mik ko ghi nổi bạn thông cảm nhé^^

 a: Ta có: ΔABC cân tại A

mà AH là đường cao

nên H là trung điểm của CB

=>CB=2CH

mà CB=CE

nên CE=2CH

=>\(\dfrac{EC}{EH}=\dfrac{2}{3}\)

Xét ΔEAD có

EH là đường trung tuyến

\(EC=\dfrac{2}{3}EH\)

Do đó: C là trọng tâm của ΔEAD

b: Xét ΔEAD có

C là trọng tâm

AC cắt DE tại M

Do đó: M là trung điểm của DE

Xét ΔEAD có

H,M lần lượt là trung điểm của DA,DE

=>HM là đường trung bình của ΔEAD

=>HM//AE

c: Để HM\(\perp\)AB thì AE\(\perp\)AB

=>ΔABE vuông tại A

Ta có: ΔABE vuông tại A

mà AC là đường trung tuyến

nên AC=CB=CE

=>AC=CB

mà AB=AC

nên AC=AB=BC

=>ΔABC đều

=>\(\widehat{ABC}=60^0\)

Khi ΔABC đều thì \(\widehat{HAC}=\dfrac{60^0}{2}=30^0\)

Ta có: \(\widehat{ACE}+\widehat{ACB}=180^0\)(hai góc kề bù)

=>\(\widehat{ACE}+60^0=180^0\)

=>\(\widehat{ACE}=120^0\)

Ta có: CA=CE

=>ΔCAE cân tại C

=>\(\widehat{CAE}=\widehat{CEA}=\dfrac{180^0-\widehat{ACE}}{2}=30^0\)

\(\widehat{HAE}=\widehat{HAC}+\widehat{CAE}=30^0+30^0=60^0\)

Xét ΔEAD có

EH là đường cao

EH là đường trung tuyến

Do đó: ΔEAD cân tại E

mà \(\widehat{EAD}=60^0\)

nên ΔEAD đều

Ta có: ΔABC đều

mà AH là đường cao

nên \(AH=AB\cdot\dfrac{\sqrt{3}}{2}=\dfrac{3\sqrt{3}}{2}\left(cm\right)\)

H là trung điểm của AD

=>\(AD=2\cdot AH=3\sqrt{3}\left(cm\right)\)

ΔADE đều

mà AM là đường trung tuyến

nên AM\(\perp\)DE
=>ΔAMD vuông tại M

Xét ΔAMD vuông tại M có \(cosDAM=\dfrac{AM}{AD}\)

=>\(\dfrac{AM}{3\sqrt{3}}=cos30=\dfrac{\sqrt{3}}{2}\)

=>\(AM=4,5\left(cm\right)\)

20 tháng 6 2021

Đây nhé

Không có mô tả.

20 tháng 6 2021

undefined

18 tháng 4 2021

a) Xét tam giác ABC cân tại A: AH là đường cao (AH vuông góc với BC)

=> AH là đường trung tuyến (TC tam giác cân)

=> H à TĐ của BC 

=> BH = HC 

Xét tam giác AHB và tam giác AHC:

BH = HC (cmt)

^AHB = ^AHC (90o)

AH chung

=> tam giác AHB = tam giác AHC (ch - cgv)

b) Ta có: HA = HD (gt) => H là TĐ của AD

Xét tam giác ACD có:

CH là đường cao (CH vuông góc AD)

CH là trung tuyến (H là TĐ của AD)

=> tam giác ACD cân tại C

c) Xét tam giác ACD cân tại A có:

AD > AC + CD (Bất đẳng thức trong tam giác)

=> \(\dfrac{1}{2}AD=\dfrac{1}{2}\left(AC+CD\right)\)

Mà  \(HA=\dfrac{1}{2}AD\) (H là TĐ của AD)

=> \(HA>\dfrac{1}{2}\left(AC+CD\right)\) (ĐPCM)

Bạn có thể giúp mik thêm 1 cái nx là vẽ hình đc ko bạn?

1) Xét ΔCAB vuông tại A và ΔEAD vuông tại A có 

AB=AD(gt)

AC=AE(gt)

Do đó: ΔCAB=ΔEAD(hai cạnh góc vuông)

Suy ra: BC=DE(hai cạnh tương ứng)

2) Xét ΔABD có AB=AD(gt)

nên ΔABD cân tại A(Định nghĩa tam giác cân)

Xét ΔABD cân tại A có \(\widehat{BAD}=90^0\)(gt)

nên ΔABD vuông cân tại A(Định nghĩa tam giác vuông cân)

a)

Xét ΔABH vuông tại H và ΔACH vuông tại H có

AB=AC(ΔABC cân tại A)

AH chung

Do đó: ΔABH=ΔACH(cạnh huyền-cạnh góc vuông)

Suy ra: BH=CH(hai cạnh tương ứng)

Xét ΔABH vuông tại H và ΔDCH vuông tại D có 

AH=DH(gt)

BH=CH(cmt)

Do đó: ΔABH=ΔDCH(hai cạnh góc vuông)

Suy ra: AB=DC(Hai cạnh tương ứng)

mà AB=AC(ΔABC cân tại A)

nên AC=DC(đpcm)

b) Xét ΔAHE vuông tại H và ΔDHE vuông tại H có 

EH chung

AH=DH(gt)

Do đó: ΔAHE=ΔDHE(hai cạnh góc vuông)

Suy ra: AE=DE(Hai cạnh tương ứng)

Xét ΔACE và ΔDCE có 

CA=CD(cmt)

CE chung

AE=DE(cmt)

Do đó: ΔACE=ΔDCE(c-c-c)