Bài 1:Cho tam giác ABC cân tại A. Đường cao AH. Trên đoạn AH lấy điểm D sao cho AD=2/3 AH. Trên tia đối tia HD lấy điểm G sao cho HD=HG
a. Chứng minh BD=CD=HG
b. Chứng minh tam giác ABG= tam giác ACG
c. Cho BC = 8cm,AH=9cm. Tính DH và BD
Bài 2: Cho tam giác ABC vuông tại A. Vẽ Phân giác BM. Từ M kẻ MN vuông góc với BC
a. Cho AB=6cm,AC=8cm. Tính BC
b. Chứng minh tam giác BAM=tam giác BNM
c. Tia NM cắt BA tại P. chứng minh tam giác MAP=tam giác MNC
d. Gọi K là trug điểm của PC. Chứng minh 3 điểm B,M,K thẳng hàng
Bài 1)
a) Trong ∆ cân ABC có AH là trung trực đồng thời là phân giác và trung tuyến
=> BAH = CAH
Xét ∆ ABD và ∆ ACD ta có :
AB = AC (∆ABC cân tại A)
AD chung
BAH = CAH (cmt)
=> ∆ABD = ∆ACD (c.g.c)
=> BD = CD
=> ∆BDC cân tại D
* NOTE : Trong ∆ vuông BDH có DH < BD ( trong tam giác vuông ; cạnh góc vuông luôn luôn nhỏ hơn cạnh huyền )
Mà DH = HG
=> DG < DB
=> DG ko thể = BD và DC
b) Xét ∆ABG và ∆ACG ta có :
AG chung
BAH = CAH (cmt)
AB = AC (cmt)
=> ∆ABG = ∆ACG (c.g.c)(dpcm)
c) Vì AH = 9cm (gt)
Mà AD = 2/3AH
=> AD = 6cm
=> DH = 9 - 6 = 3 cm
Mà AH là trung tuyến BC
=> BH = HC = BC/2 = 4 cm
Áp dụng định lý Py ta go vào ∆ vuông BHD ta có
=> BD = 5 cm
Bài 2) Áp dụng định lý Py ta go vào ∆ vuông ABC ta có :
BC = 10 cm
b) Xét ∆ vuông ABM và ∆ vuông BMC ta có :
BM chung
ABM = CBM ( BM là phân giác)
=> ∆ABM = ∆BMC ( ch - gn )
c) Vì ∆ABM = ∆BMC (cmt)
=> AM = NM
Xét ∆ vuông APM và ∆ MNC ta có :
AM = NM (cmt)
AMP = NMC ( đối đỉnh)
=> ∆APM = ∆MNC ( cgv - gn )
d) Vì ∆ APM = ∆MNC (cmt)
=> PM = MC
=> ∆MPC cân tại M
Mà K là trung điểm PC
=> MK là trung tuyến đồng thời là trung trực và là phân giác ∆PMC
=> MK vuông góc với PC
=> M; K thẳng hàng
Mà BM là phân giác ABC
=> B ; M thẳng hàng
=> B ; M ; K thẳng hàng