Chứng minh:
( a-b ) . ( a2 + ab +b2 ) - (a+b ). (a2 -ab +b2) = -2b3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)
= a2 - 2a - a + 2 + a2 + 4a - 3a - 12 - 2a2 - 5a + 34
= (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)
= -7a + 24
=> VT = VP
=> đpcm
b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)
= (a3 - b3) - (a3 + b3)
= a3 - b3 - a3 - b3
= -2b3
=> VT = VP
=> Đpcm
Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)
Biến đổi vế trái ta có:
VT = (a + b)( a 2 – ab + b 2 ) + (a – b)( a 2 + ab + b 2 )
= a 3 + b 3 + a 3 – b 3 = 2 a 3 = VP
Vế trái bằng vế phải nên đẳng thức được chứng minh.
VP `=(a+b)(a^2-ab+b^2)`
`=a^3-a^2b+ab^2+a^2b-ab^2+b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)+b^3`
`=a^3+b^3`
.
VP `=(a-b)(a^2+ab+b^2)`
`=a^3+a^2b+ab^2-a^2b-ab^2-b^3`
`=a^3+(a^2b-a^2b)+(ab^2-ab^2)-b^3`
`=a^3-b^3`
Ta có: \(VP=\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
\(=a^3-b^3-3a^2b+3ab^2\)
\(=a^3-3a^2b+3ab^2-b^3=\left(a-b\right)^3=VT\)
⇒ đpcm
\(\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)
\(=\left(a-b\right)\left(a^2+ab+b^2-3ab\right)\)
\(=\left(a-b\right)^3\)
2:
a: =>a^2+2ab+b^2-2a^2-2b^2<=0
=>-(a^2-2ab+b^2)<=0
=>(a-b)^2>=0(luôn đúng)
b; =>a^2+b^2+c^2+2ab+2ac+2bc-3a^2-3b^2-3c^2<=0
=>-(2a^2+2b^2+2c^2-2ab-2ac-2bc)<=0
=>(a-b)^2+(b-c)^2+(a-c)^2>=0(luôn đúng)
Để \(\frac{2a+2b}{ab+1}\) là bình phương của 1 số nguyên thì 2a + 2b chia hết cho ab + 1; mà ab + 1 chia hết cho 2a + 2b => ab + 1 = 2b + 2a
=> \(\frac{2a+2b}{ab+1}\)=1 = 12
có \(a\ge1348,b\ge1348\)\(=>ab=1348^2\)
và \(a+b\ge2696=>2022\left(a+b\right)\ge5451312\)
áp dụng BDT Cô si=>\(a^2+b^2+ab\ge3ab=3.1348^2=5451312\)
\(=>a^2+b^2+ab-2022\left(a+b\right)\ge5451312-5451312=0\)
\(=>a^2+b^2+ab\ge2022\left(a+b\right)\). Dấu'=' xảy ra<=>a=b=1348
\(\left(a-b\right)\left(a^2+ab+b^2\right)=a^3-b^3\)
\(\left(a+b\right)\left(a^2-ab+b^2\right)=a^3+b^3\)
Khi đó VT trở thành:
\(a^3-b^3-a^3-b^3=-2b^3\)
TL:
\(\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(=a^3-b^3-a^3-b^3\)
\(=-2b^3\)
=> đpcm