K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

a) VT = (a - 1)(a - 2) + (a - 3)(a + 4) - (2a2 + 5a - 34)

         = a2 - 2a - a + 2 + a2 + 4a - 3a - 12  - 2a2 - 5a + 34

       = (a2 + a2 - 2a2) - (2a + a - 4a + 3a + 5a) + (2 - 12 + 34)

        =  -7a + 24

=> VT = VP

=> đpcm

b) VT = (a - b)(a2 + ab + b2) - (a + b)(a2 - ab + b2)

         = (a3 - b3) - (a3 + b3)

         = a3 - b3 - a3 - b3

           = -2b

=> VT = VP

=> Đpcm

Câu b bn xem đề lại (a + b)(a2 - ab + b2) ko phải là (a + b)(a2 - ab - b2)

17 tháng 1 2022
Ngu kkkkkkkkkkkkkkkkkkkkkkkkkkkkkk
14 tháng 10 2023

B, C và D

14 tháng 10 2023

mấy cái đó là đúng hả bạn

 

22 tháng 9 2017

\(=a^3+b^3+a^3-b^3\)

\(=2a^3\)

NV
12 tháng 12 2020

\(\left(a+b+c\right)^2=a^2+b^2+c^2\Leftrightarrow ab+bc+ca=0\)

\(\Rightarrow a^3b^3+b^3c^3+c^3a^3=3a^2b^2c^2\)

Ta có:

\(\dfrac{bc}{a^2}+\dfrac{ac}{b^2}+\dfrac{ab}{c^2}=\dfrac{a^3b^3+b^3c^3+c^3a^3}{a^2b^2c^2}=\dfrac{3a^2b^2c^2}{a^2b^2c^2}=3\)

31 tháng 7 2019

Biến đổi vế trái ta có:

VT = (a + b)( a 2  – ab +  b 2 ) + (a – b)( a 2  + ab +  b 2 )

=  a 3  +  b 3  +  a 3  –  b 3  = 2 a 3  = VP

Vế trái bằng vế phải nên đẳng thức được chứng minh.

18 tháng 2 2020

86 vì ta học lớp 9

18 tháng 2 2020

Ta có: \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)\)

\(=a\left(b^2c^2-b^2-c^2+1\right)+b\left(a^2c^2-a^2-c^2+1\right)\)

\(+c\left(a^2b^2-a^2-b^2+1\right)\)

\(=ab^2c^2-ab^2-ac^2+a+ba^2c^2-a^2b-bc^2+b\)

\(+ca^2b^2-a^2c-b^2c+c\)

\(=\left(ab^2c^2+ba^2c^2+ca^2b^2\right)+\left(a+b+c\right)\)

\(-\left(ab^2+ac^2+a^2b+bc^2+a^2c+b^2c\right)\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)\)\(-\left[ab\left(a+b\right)+bc\left(b+c\right)+ca\left(c+a\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left[ab\left(a+b+c\right)+bc\left(a+b+c\right)+ca\left(a+b+c\right)\right]\)

\(=abc\left(bc+ac+ab\right)+\left(a+b+c\right)+3abc\)\(-\left(a+b+c\right)\left(ab+bc+ca\right)\)

\(=abc\left(bc+ac+ab\right)+abc+3abc\)\(-abc\left(ab+bc+ca\right)=4abc\)

Vậy \(a\left(b^2-1\right)\left(c^2-1\right)+b\left(a^2-1\right)\left(c^2-1\right)+c\left(a^2-1\right)\left(b^2-1\right)=4abc\)(đpcm)

NV
22 tháng 2 2021

\(a^2+b^2\ge2ab\Rightarrow ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\ge a^2+b^2-\dfrac{a^2+b^2}{2}=\dfrac{a^2+b^2}{2}\)

\(\Rightarrow a^2+b^2\le8\)

\(a^2+b^2\ge-2ab\Rightarrow-ab\le\dfrac{a^2+b^2}{2}\)

\(\Rightarrow4=a^2+b^2-ab\le a^2+b^2+\dfrac{a^2+b^2}{2}=\dfrac{3\left(a^2+b^2\right)}{2}\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\)

\(\Rightarrow\dfrac{8}{3}\le a^2+b^2\le4\)