K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2019

a)Ta có :\(\widehat{BAC}+\widehat{ACB}+\widehat{ABC}=180\) 

THay số \(\Rightarrow\widehat{ABC}=60\) (1)

Xét \(\Delta BAH\perp\) tại H và \(\Delta DAH\perp\) tại H có:

    BH=HD(gt)

  AH chung

\(\Rightarrow\Delta BAH=\Delta DAH\left(2cgv\right)\) 

\(\Rightarrow AB=AD\) và  \(\widehat{ABH}=\widehat{ADH}\) (2) 

Từ (1) vá (2) \(\Rightarrow\Delta ABD\) đều (đpcm)

b) mk làm tắt nhé!

Xét \(\Delta HDA\perp\) tại H và \(\Delta EDC\perp\) tại E có:

..............

\(\Rightarrow\Delta HDA=\Delta EDC\left(ch-gn\right)\)

=> HD=DE

\(\Rightarrow\Delta HDE\) cân tại D\(\Rightarrow\widehat{DHE}=\widehat{DEH}\)

Ta có:\(\widehat{ADH}+\widehat{HDE}=180\Leftrightarrow\widehat{HDE}=120\) 

\(\widehat{HDE}+\widehat{DHE}+\widehat{DEH}=180\Rightarrow\widehat{DEH}=\widehat{DHE}=30\) 

Vì \(\widehat{DCA}=\widehat{DHE}=30\) 

mà 2 góc này ở vị trí so le trong =>HE//AC(đpcm)

7 tháng 7 2019

A B C H E D 1 2

a) Ta có : tam giác ABC vuông tại A có góc C = 300 => \(\widehat{B}\)= 600(1)

Xét \(\Delta ABD\)có : BH = DH (gt), AH \(\perp\)BD => \(\Delta ABD\)cân tại A (2)

Từ (1), (2) => tam giác ABD đều (đpcm)

b) Theo câu a) \(\Delta ABD\)đều => \(\widehat{BAD}\)= 600 => \(\widehat{CAD}\)= 300.

Mà \(\widehat{ACB}\)= 300 (gt) => \(\Delta ACD\)cân tại D => AD = CD

Xét \(\Delta AHD\)và \(\Delta CED\)có :

AD = CD (cmt)

\(\widehat{D_1}=\widehat{D_2}\)(đối đỉnh)

=> \(\Delta AHD\)\(\Delta CED\)(cạnh huyền - góc nhọn)

=> HD = DE => \(\Delta HDE\)cân tại D

Xét \(\Delta HDE\&\Delta ACD\)là 2 tam giác cân có \(\widehat{HDE}=\widehat{ADC}\)(2 góc ở đỉnh bằng nhau) nên các góc ở đáy cũng bằng nhau.

Hay \(\widehat{HED}=\widehat{DAC}\)(2 góc bằng nhau ở vị trí so le trong)

=> HE // AC (đpcm)

7 tháng 7 2019

Cho tam giác ABC vuông ở A có góc C = 30 độ,đường cao AH,Trên đoạn HC lấy điểm D sao cho HD = HB,Từ C kẻ CE vuông góc với AD,C/m: Tam giác ABD là tam giác đều,AH = CE,EH // AC,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

a,Xét tam giác ABD có AH là đường cao( AH vuông góc với BC)
đồng thời AH là đường trung tuyến( HD=HB)
=> tam giác ABD cân tại A(1)
lại có tam giác ABC vuông tại A, góc C=30 độ
=> góc B=90 độ-gócc
=90-30 =60 độ(2)
từ(1) (2)=> tam giác ABD đều

Cho tam giác ABC vuông ở A có góc C = 30 độ,đường cao AH,Trên đoạn HC lấy điểm D sao cho HD = HB,Từ C kẻ CE vuông góc với AD,C/m: Tam giác ABD là tam giác đều,AH = CE,EH // AC,Toán học Lớp 8,bà i tập Toán học Lớp 8,giải bà i tập Toán học Lớp 8,Toán học,Lớp 8

10 tháng 3 2020

a) câu a sửa lại đề nhé

tam giác ABD = tam giác CBE

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cma)Tính AHb)CM: Tam giác ABH=tam giác ACHc)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE când)CM:AH là trung trực của DEBài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại Ha)Tam giác ADB=tam giác ACEb)Tam giác AHC cânc)ED song song BCd)AH cắt BC tại K, trên HK lất M sao...
Đọc tiếp

Bài 1: Cho tam giác ABC cân tại A,vẽ AH vuông góc với BC tại H. Biết AB=10cm, BH=6cm

a)Tính AH

b)CM: Tam giác ABH=tam giác ACH

c)Trên BA lấy D, CA lấy E sao cho BD=CE.CM tam giác HDE cân

d)CM:AH là trung trực của DE

Bài 2: Cho tam giác ABC cân tại A.Kẻ BD vuông góc với AC,CE vuông góc với AB. BD cắt CE cắt nhau tại H

a)Tam giác ADB=tam giác ACE

b)Tam giác AHC cân

c)ED song song BC

d)AH cắt BC tại K, trên HK lất M sao cho K là trung điểm của HM.CM tam giác ACM vuông

Bài 3:Cho tam giác ABC vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC(E thuộc BC.Gọi F là giao điểm của BA và ED.CMR:

a)tam giác ABD=tam giác EBD

b)Tam giác ABE là tam giác cân

c)DF=DC

Bài 4: Cho tam giác ABC có góc A=90 độ,AB=8cm,AC=6cm

a) Tính BC

b)Trên cạnh AC lấy điểm E sao cho AE=2cm,trên tia đối của tia AB lấy D sao cho AD=AB.CM: tam giác BEC=tam giác DEC

c)CM: DE đi qua trung điểm cạnh BC

0
   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BACb) Chứng minh AM=ANc) Chứng minh AI vuông góc với BC  Bài 2 : Cho tam giác vuông tại A có góc C=30 độa) Tính góc Bb) Vẽ tia phân giác của góc B cắt AC tại Dc) Trên cạnh BC lấy điểm M sao cho BM =AB...
Đọc tiếp

   Bài 1: Cho tam giác ABC với AB=AC. Lấy I là trung điểm của BC . Trên tia BC lấy điểm N , trên tia CB lấy điểm M sao cho CN=BM . 

a) Chứng minh góc ABI=góc ACI và AI là tia phân giác của góc BAC

b) Chứng minh AM=AN

c) Chứng minh AI vuông góc với BC

  Bài 2 : Cho tam giác vuông tại A có góc C=30 độ

a) Tính góc B

b) Vẽ tia phân giác của góc B cắt AC tại D

c) Trên cạnh BC lấy điểm M sao cho BM =AB . Chứng minh : tam giác ABD=tam giác MBD

D qua B vẽ đường thẳng xy vuông góc tại BA . Từ A kẻ đường thẳng song song với BD cắt xy ở A . Chứng minh: AK=BD

Tính góc AKB

  Bài 3: Cho tam giác ABC vuông ở A và AB=AC . Gọi K là trung điểm của BC

a) Chứng minh tam giác AKB=tam giác AKC

b) Chứng minh AK vuông góc với BC 

c) Từ C vẽ đường vuông góc với BC cắt đường thẳng AB tại E. Chứng minh EC//AK

1
21 tháng 1 2017

Bài 1:

a)+ Vì AB = ACNÊN

==>Tam giác ABC cân tại A

==>góc ABI = góc ACI

+ Xét tam giác ABI và tam giác ACI có:

               AI là cạch chung

               AB = AC(gt)

               BI = IC ( I là trung điểm của BC)

Vậy tam giác ABI = tam giác ACI (c.c.c)

==> góc BAI = góc CAI ( 2 góc tương ứng )

==>AI là tia phân giác của góc BAC

b)

Xét tam giác BAM và tam giác BAN có:

         AB = AC (gt)

        góc B = góc C (cmt)

         BM = CN ( gt )

    Vậy tam giác BAM = tam giác CAN (c.g.c)

==> AM = AN (2 cạnh tương ứng)

c)

vì tam giác BAI = tam giác CAI (cmt)

==>góc AIB = góc AIC (2 góc tương ứng) 

Mà góc AIB+ góc AIC = 180độ ( kề bù)

nên AIB=AIC=180:2=90

==>AI vuông góc với BC

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BDb) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BDBÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘBÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG...
Đọc tiếp

BÀI 1: a) CHO HÌNH BÌNH HÀNH ABCD CÓ góc >90 . SO SÁNH AC VÀ BD

b) TỨ GIÁC ABCD CÓ \hat{A} , \hat{B} ,\hat{C} TÙ. CHỨNG MINH AC<BD



BÀI 2: CHO HÌNH CHỮ NHẬT ABCD. KẺ BH VUÔNG GÓC AC (H THUỘC AC). TRÊN TIA ĐỐI CỦA TIA BH LẤY ĐIỂM E SAO CHO BE = AC. CHỨNG MINH RẰNG GÓC ADE = 45 ĐỘ


BÀI 3 : CHỨNG MINH RẰNG TỨ GIÁC CÓ GIAO ĐIỂM HAI ĐƯỜNG CHÉO TRÙNG VỚI GIAO ĐIỂM CÁC ĐOẠN THẲNG NỐI TRUNG ĐIỂM CÁC CẠNH ĐỐI DIỆN THÌ TỨ GIÁC ĐÓ LÀ HÌNH BÌNH HÀNH



BÀI 4: CHO TAM GIÁC ABC VUÔNG TẠI A ( AC > AB), ĐƯỜNG CAO AH. TRÊN TIA HC LẤY HD = HA, ĐƯỜNG VUÔNG GÓC VỚI BC TẠI D CẮT AC TẠI E.

a) CHỨNG MINH AE = AB

b) GỌI M LÀ TRUNG ĐIỂM BE . TÍNH GÓC AHM


BÀI 5: TỨ GIÁC ABCD CÓ CÓ GÓC A = GÓC B =90 ĐỘ VÀ AC = BD.

a) ABCD CÓ PHẢI LÀ HÌNH CHỮ NHẬT KHÔNG? C/M

b) LẤY ĐIỂM M NẰM GIỮA A,C. VẼ MK VUÔNG GÓC AB TẠI K , MH VUÔNG GÓC AD TẠI H. CHỨNG MINH HK // BD

C) TIA MH CẮT BC Ở E, TIA KM CẮT CD TẠI F. MD CẮT HF Ở I, MB CẮT KE TẠI J/ CHỨNG MINH HK + EF = 2IJ

2
12 tháng 10 2016

ai lam thi lam di 

22 tháng 12 2021

em thi