Tìm số nguyên tố sao cho:
a) P+2; P+6; P+8 là các số nguyên tố
b) P+94; P+1994 là các số nguyên tố
Các bạn giải giúp mình với nha, mình đang cần gấp lắm!
Cảm ơn các bạn nhiều!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2-2 < 0
=> a^2 < 2
Mà a^2 >= 0
=> 0 < = a^2 < 2
=> a^2 thuộc {0;1}
=> a thuộc {-1;0;1}
Vậy .......
Tk mk nha
\(a+2⋮a-1\)
\(=>\left(a-1\right)+3⋮a-1\)
\(\)Vì \(a-1⋮a-1\) mà \(\left(a-1\right)+3⋮a-1\)
\(=>3⋮a-1\)
\(=>a\in\text{Ư}\left(3\right)=\left\{-3;-1;1;3\right\}\)
co a+2=a-1+3
de a+2 chia het cho a-1 thi 3 chia het cho a-1
=> a-1 thuoc uoc cua 3
ma U(3)∈{-1;1;-3;3}
ta co bang sau
a-1 | -1 | 1 | -3 | 3 |
a | 0 | 2 | -2 | 4 |
vay...
Lời giải:
Với $n$ nguyên, để $A$ nguyên thì $2n-1\vdots -n+3$
Hay $2n-1\vdots n-3$
$\Rightarrow 2(n-3)+5\vdots n-3$
$\Rightarrow 5\vdots n-3$
$\Rightarrow n-3\in\left\{\pm 1; \pm 5\right\}$
$\Rightarrow n\in\left\{4; 2; -2; 8\right\}$
Lời giải:
a.
Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)
Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn
$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)
Vậy $n=0$
b. $13n$ là snt khi $n<2$
Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt
Nếu $n=1$ thì $13n=13$ là snt (tm)
a) Ta có:\(n-6⋮n-1\)
\(\Leftrightarrow n-1-5⋮n-1\)
mà \(n-1⋮n-1\)
nên \(-5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(-5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Vậy: \(n\in\left\{2;0;6;-4\right\}\)
b) Ta có: \(3n+2⋮n-1\)
\(\Leftrightarrow3n-3+5⋮n-1\)
mà \(3n-3⋮n-1\)
nên \(5⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(5\right)\)
\(\Leftrightarrow n-1\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{2;0;6;-4\right\}\)
Vậy: \(n\in\left\{2;0;6;-4\right\}\)
c) Ta có: \(n^2+5⋮n+1\)
\(\Leftrightarrow n^2+2n+1-2n+4⋮n+1\)
\(\Leftrightarrow\left(n+1\right)^2-2n-2+6⋮n+1\)
mà \(\left(n+1\right)^2⋮n+1\)
và \(-2n-2⋮n+1\)
nên \(6⋮n+1\)
\(\Leftrightarrow n+1\inƯ\left(6\right)\)
\(\Leftrightarrow n+1\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)
hay \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
Vậy: \(n\in\left\{0;-2;1;-3;2;-4;5;-7\right\}\)
ta có a+5=a+5+3
=> 3 chia hết cho a+5
a nguyên => a+5 nguyên
=> a+5\(\in\)Ư(3)={-3;-1;1;3}
ta có bảng
a+5 | -3 | -1 | 1 | 3 |
a | -8 | -6 | -4 | -2 |
vậy a={-8;-6;-4;-2}
Ta có: \(a+8⋮a+5\)
\(\Leftrightarrow a+5+3⋮a+5\)
\(\Leftrightarrow3⋮a+5\)
\(\Rightarrow a+5\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)
Nếu a + 5 = -1 => a = -6
a + 5 = 1 => a = -4
a + 5 = 3 => a = -2
a + 5 = -3 => a = -8
Vậy \(a=\left\{-6;-4;-2;-8\right\}\)thì \(a+8⋮a+5\)
TL:
a)Để P+2;P+6; P+8 là số nguyên tố thì \(P=5\)
hc tốt
trình bày ra cho mình nha