K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 11 2021

a) Với p=2

⇒ 5p+3=13 (TM)

Với p>2 

⇒ p=2k+1

⇒ 5p+3=5(2k+1)+3

             =10k+8 ⋮2

⇒ là hợp số (L)

Vậy p=2

28 tháng 12 2021

Ho

28 tháng 12 2021

???

10 tháng 12 2015

bạn vào câu hỏi tương  tự

10 tháng 12 2015

Click:Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

a: TH1: p=3

=>p+14=17 và 4p+7=4*3+7=12+7=19(nhận)

TH2: p=3k+1

=>p+14=3k+15=3(k+5)

=>Loại

TH3: p=3k+2

4p+7=4(3k+2)+7=12k+8+7

=12k+15

=3(4k+5) chia hết cho 3

=>Loại

b: TH1: p=5

=>p+6=11; p+12=17; p+8=13; p+24=29

=>NHận

TH2: p=5k+1

=>p+24=5k+25=5(k+5)

=>Loại

TH3: p=5k+2

p+8=5k+10=5(k+2) chia hết cho 5

=>Loại

TH4: p=5k+3

p+12=5k+15=5(k+3)

=>loại
TH5: p=5k+4

=>p+6=5k+10=5(k+2)

=>Loại

29 tháng 8 2015

a) 5p + 3 là số nguyên tố

=> 5p + 3 lẻ

=> 5p chẵn

=> p chẵn

Mà số nguyên tố chẵn duy nhất là 2.

Vậy p = 2 b

) Vì p là số nguyên tố < 7 nên :

- Nếu p = 2 thì p + 2 = 4, là hợp số, loại

- Nếu p = 3 thì p + 6 = 9, là hợp số, loại

- Nếu p = 5 thì p + 2 = 7 ; p + 6 = 11 ; p + 8 = 13 đều là số nguyên tố, chọn

Vậy p = 5 

 

**** cho mk

29 tháng 10 2017

thank Quỳnh

30 tháng 10 2017

a) P=3

b)P=1

AH
Akai Haruma
Giáo viên
28 tháng 10 2021

Lời giải:

a.

Nếu $n=0$ thì $2^n+22=23$ là snt (thỏa mãn)

Nếu $n>0$ thì $2^n$ chẵn, $22$ chẵn

$\Rightarrow 2^n+22$ chẵn. Mà $2^n+22>2$ nên không thể là snt (trái đề bài)

Vậy $n=0$

b. $13n$ là snt khi $n<2$

Mà $n$ là snt nên $n=0,1$. Nếu $n=0$ thì $13n=0$ không là snt

Nếu $n=1$ thì $13n=13$ là snt (tm)

28 tháng 10 2021

cảm ơn bn