Các Bạn Giúp Mình Với
Tìm x, y, z biết :
a, x phần 3 = y phần 4 ; y phần 5 = z phần 7 và 2x + 3y - z = 186
b, x phần 2 = y phần 3 = z phần 5 và x + y + z = -90
c, 2x = 3y = 5z và x-y+z = -33
d, 3x = 2y ; 7x = 5z ; x+y+z = 32
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
\(-8=\frac{-8}{1}=\frac{-16}{2}=\frac{-24}{3}=\frac{-32}{4}=\frac{-40}{5}\)
\(-2=\frac{-2}{1}=\frac{-4}{2}=\frac{-6}{3}=\frac{-8}{4}=\frac{-10}{5}\)
\(3=\frac{3}{1}=\frac{6}{2}=\frac{9}{3}=\frac{12}{4}=\frac{15}{5}\)
Bài 2 :
a) Để A là phân số thì :
\(n-6\ne0\Rightarrow n\ne6\)
b)\(A=\frac{4}{0-6}=\frac{4}{-6}\)
\(A=\frac{4}{7-6}=4\)
\(A=\frac{4}{-12-6}=\frac{-2}{9}\)
Bài 3 : [ Tương tự bài 2 ]
Bài 4 : [ Suy nghĩ thì ra ]
[ Hoq chắc - có gì sai thông cảm ]
a)
\(\frac{x-3}{10}=\frac{4}{x-3}\)
=> ( x - 3 )2 = 4 . 10.
( x - 3 )2 = 40
Mà x - 3 thuộc Z ( vì x thuộc Z ) nên ( x - 3 )2 là số chính phương.
Do 40 không là số chính phương.
=> Ko tìm được x thuộc Z thỏa mãn đề bài.
b)
\(\frac{x+5}{9}=\frac{4}{x+5}\)
=> ( x + 5 )2 = 4 . 9
( x + 5 )2 = 36
=> x + 5 = 6 hoặc x + 5 = -6.
+) x + 5 = 6
x = 1.
+) x + 5 = -6
x = -11.
Vậy x = 1; x = -11.
A=[(-4x-8)+13]/(x+2)
=-4+13/(x+2) thuộc Z <=> 13/(x+2) thuộc Z <=> 13 chia hết cho (x+2)(do x thuộc Z)
hay (x+2) thuộc Ư(13)={-1;1;13;-13}
tìm x
B=[(x²-1)+6]/(x-1)
=x+1+6/(x-1)
làm tiếp như A
C=[(x²+3x+2)-3]/(x+2)
=[(x+2)(x+1)-3]/(x+2)
=x+1-3/(x+2)
làm tiếp như A
2/cậu cho đề thiếu đọc lại đề xem A có thuộc Z không
3,4 cũng vậy
a) \(\frac{x}{3}=\frac{y}{4},\frac{y}{5}=\frac{z}{7}\)
Ta có : \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}\)
\(\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được :
\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=2\) ( vì 2x + 3y - z = 186 )
\(\Rightarrow\left\{{}\begin{matrix}2x=30.3=90\\3y=60.3=180\\z=28.3=84\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=45\\y=60\\z=84\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(45,60,84\right)\)
b) Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\) và \(x+y+z=-90\)
Áp dụng dãy tỉ số bằng nhau ta được :
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=\frac{x+y+z}{2+3+5}=\frac{-90}{10}=-9\)
( do \(x+y+z=-90\) )
\(\Rightarrow\left\{{}\begin{matrix}x=2.\left(-9\right)=-18\\y=3.\left(-9\right)=-27\\z=5.\left(-9\right)=-45\end{matrix}\right.\)
Vậy : \(\left(x,y,z\right)=\left(-18,-27,-45\right)\)