Giải bất phương trình sau:
x2 - 8x - 9 ≥ 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow\left(2x+5\right)\left(x-3\right)-\left(x-3\right)\left(x+3\right)=0\)
=>(x-3)(2x+5-x-3)=0
=>(x-3)(x+2)=0
=>x=3 hoặc x=-2
x2-9=(x-3)(2x-5)
(=) (x-3)(x+3)=(x-3)(2x-5)
(=) (x-3)(x+3)-(x-3)(2x-5)=0
(=) (x-3)(x+3-2x+5)=0
(=) (x-3)(8-x)=0
(=)x-3=0 hoặc 8-x=0
(=)x=0 hoặc x=8
Vậy S=\(\left\{0;8\right\}\)
\(x^2+\sqrt{x+1}=1\)
Giải:
ĐK: \(x\ge-1\)
PT tương đương với: \(\sqrt{x+1}=1-x^2\)
\(\Leftrightarrow\left\{{}\begin{matrix}1-x^2\ge0\\x+1=1-2x^2+x^4\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-1\le x^2\le1\\x^4-2x^2-x=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-1\le x\le1\\\left\{{}\begin{matrix}x=0\left(TM\right)\\x^3-2x-1=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}-1\le x\le1\\\left[{}\begin{matrix}x=0\\x=-1\\x^2-x-1=0\end{matrix}\right.\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=\dfrac{1-\sqrt{5}}{2}\end{matrix}\right.\)
\(x^2-8x+16< 0\)
\(\Leftrightarrow\left(x-4\right)^2< 0\)
\(\Rightarrow\)vô lí
=>\(\left(\dfrac{x^2-8}{2008}-1\right)+\left(\dfrac{x^2-7}{2009}-1\right)=\left(\dfrac{x^2-6}{2010}-1\right)+\left(\dfrac{x^2-5}{2011}-1\right)\)
=>x^2-2016=0
=>x^2=2016
=>\(x=\pm\sqrt{2016}\)
a) Tam thức \(f(x) = - 5{x^2} + x - 1\) có \(\Delta = - 19 < 0\), hệ số \(a = - 5 < 0\) nên f(x) luôn âm (cùng dấu với a) với mọi x, tức là \(\)\( - 5{x^2} + x - 1 < 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm
b) Tam thức \(g(x) = {x^2} - 8x + 16\) có \(\Delta = 0\), hệ số a=1>0 nên g(x) luôn dương (cùng dấu với a) với mọi \(x \ne 4\), tức là \({x^2} - 8x + 16 > 0\) với mọi \(x \ne 4\)
Suy ra bất phương trình có nghiệm duy nhất là x = 4
c) Tam thức \(h(x) = {x^2} - x + 6\) có \(\Delta = - 23 < 0\), hệ số a=1>0 nên h(x) luôn dương (cùng dấu với a) với mọi x, tức là \({x^2} - x + 6 > 0\) với mọi \(x \in \mathbb{R}\). Suy ra bất phương trình có vô số nghiệm.
a.
\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-1\le x\le3\)
b.
ĐKXĐ: \(x\ge0\)
\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)
\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)
\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)
\(\Leftrightarrow2x^2-8x+5=0\)
\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)
x2 - 8x - 9 ≥ 0
<=> (x+1)(x-9)\(\ge\)0
<=> \(\hept{\begin{cases}x+1\ge0\\x-9\ge0\end{cases}}\)hoặc \(\hept{\begin{cases}x+1\le0\\x-9\le0\end{cases}}\)
<=> \(\orbr{\begin{cases}x\ge9\\x\le-1\end{cases}}\)