K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2019

Với mọi a nguyên dương , 

Ta có: 

\(\frac{1}{\sqrt{a}}=\frac{2}{2\sqrt{a}}>\frac{2}{\sqrt{a}+\sqrt{a+1}}=2\left(\sqrt{a-1}-\sqrt{a}\right)=2\sqrt{a-1}-2\sqrt{a}\)

Biểu thức:

\(B=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{24}}\)

\(>2\sqrt{2}-2\sqrt{1}+2\sqrt{3}-2\sqrt{2}+2\sqrt{4}-2\sqrt{3}+...+2\sqrt{25}-2\sqrt{24}\)

\(=-2\sqrt{1}+2\sqrt{25}=-2+10=8\)

Vậy B>8

NV
25 tháng 10 2020

\(B=\sqrt[3]{\frac{3}{\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{2}+1\right)^3}}=\sqrt[3]{\frac{3}{\left(\sqrt[3]{2}-1\right)\left(3+3\sqrt[3]{4}+3\sqrt[3]{2}\right)}}\)

\(=\sqrt[3]{\frac{1}{\left(\sqrt[3]{2}-1\right)\left(\sqrt[3]{4}+\sqrt[3]{2}+1\right)}}=\sqrt[3]{\frac{1}{\left(\sqrt[3]{2}\right)^3-1^3}}=1\)

14 tháng 5 2021

Em gửi ảnh ạ !

14 tháng 5 2021

Em gửi ảnh trên ạ !!!!!

16 tháng 12 2017

b, \(\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{100}}>10\)

Ta có: \(1< 100\Rightarrow\sqrt{1}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{1}}< \frac{1}{\sqrt{100}}\)

           \(2< 100\Rightarrow\sqrt{2}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{2}}< \frac{1}{\sqrt{100}}\)

          \(3< 100\Rightarrow\sqrt{3}< \sqrt{100}\Rightarrow\frac{1}{\sqrt{3}}< \frac{1}{\sqrt{100}}\)

           ______________________________________________

          \(100=100\Rightarrow\sqrt{100}=\sqrt{100}\frac{1}{\sqrt{100}}=\frac{1}{\sqrt{100}}\left(1\right)\)

Từ (1) suy ra:

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}+\frac{1}{\sqrt{100}}+...+\frac{1}{\sqrt{100}}\left(100sh\frac{1}{\sqrt{100}}\right)\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{1}{\sqrt{100}}.100\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>\frac{10}{\sqrt{100}}\)

\(\Rightarrow\frac{1}{\sqrt{10}}+\frac{1}{\sqrt{20}}+\frac{1}{\sqrt{30}}+...+\frac{1}{\sqrt{100}}>10\left(ĐPCM\right)\)

NV
14 tháng 10 2019

ĐKXĐ: ....

\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}-\frac{x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

\(x=33-8\sqrt{2}=\left(4\sqrt{2}-1\right)^2\Rightarrow\sqrt{x}=4\sqrt{2}-1\)

\(\Rightarrow P=\frac{4\sqrt{2}-1}{33-8\sqrt{2}+4\sqrt{2}-1+1}=\frac{4\sqrt{2}-1}{33-4\sqrt{2}}\)

\(P-\frac{1}{3}=\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-\left(\sqrt{x}-1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\) \(\forall x\ne1\)

\(\Rightarrow P< \frac{1}{3}\)