K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\left(\sin\alpha+\cos\alpha+\sin\alpha-\cos\alpha\right)^2-2\left(\sin\alpha+\cos\alpha\right)\left(\sin\alpha-\cos\alpha\right)\)

\(=4\sin^2\alpha-2\sin^2\alpha+2\cos^2\alpha=2\left(\sin^2\alpha+\cos^2\alpha\right)=2\)

\(B=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=\sin^4\alpha+\cos^4\alpha+2\sin^2\alpha.\cos^2\alpha\)

\(=\left(\sin^2\alpha+\cos^2\alpha\right)^2-1=0\)

\(C=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\left(\sin^2\alpha+\cos^2\alpha\right)=3\left(\sin^4\alpha+\cos^4\alpha\right)-2\sin^2\alpha.\cos^2\alpha\)

\(=3\left(\sin^2\alpha+\cos^2\alpha-\frac{1}{9}\right)^2-\frac{1}{9}=\frac{61}{27}\)

\(A=sin^4a+2\cdot sin^4a\cdot cos^2a+cos^4a+2\cdot cos^4a\cdot sin^2a\)

\(=\left(sin^4a+cos^4a\right)+2\cdot sina^2a\cdot cos^2a\left(sin^2a+cos^2a\right)\)

\(=sin^4a+cos^4a+2\cdot sin^2a\cdot cos^2a\)

\(=\left(sin^2a+cos^2a\right)^2=1\)

a: (sina+cosa)^2

=sin^2a+cos^2a+2*sina*cosa

=1+sin2a

b: \(cos^4a-sin^4a=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\)

\(=cos^2a-sin^2a=cos2a\)

30 tháng 3 2018

15 tháng 4 2019

Ta có  sin α − cos α = 1 5 ⇒ sin α − cos α 2 = 1 5

⇔ 1 − 2 sin α cos α = 1 5 ⇔ sin α cos α = 2 5 .

Ta có  P = sin 4 α + cos 4 α = sin 2 α + cos 2 α 2 − 2 sin 2 α cos 2 α

= 1 − 2 sin α c o s α 2 = 17 5 .  

Chọn B.

18 tháng 7 2017

A = 4 [ ( sin 2 α   +   cos 2 α ) 2   -   2 sin 2 α cos 2 α ] - cos4α

     =   4 ( 1   -   sin 2 2 α / 2 )   -   1   +   2 sin 2 2 α   = 3

4 tháng 4 2017

A = 2 ( sin 2 α   +   cos 2 α ) ( sin 4 α   +   cos 4 α   -   sin 2 α cos 2 α )

-   3 ( sin 4 α   +   cos 4 α )

     =   - sin 4 α   -   cos 4 α   -   2 sin 2 α cos 2 α

        =   - ( sin 2 α   +   cos 2 α ) 2   =   - 1

25 tháng 6 2023

\(a,cos^4a-sin^4a=2cos^2a-1\\ VT=\left(cos^2a-sin^2a\right)\left(cos^2a+sin^2a\right)\\ =cos^2a-sin^2a\\ =cos2a=2cos^2a-1\)

\(b,VT=\dfrac{cos^2a+\dfrac{sin^2a}{cos^2a}-1}{sin^2a}\\ =\dfrac{\dfrac{cos^4a+sin^2a-cos^2a}{cos^2a}}{sin^2a}\\ =\dfrac{\dfrac{cos^4a+\left(1-cos^2a\right)-cos^2a}{cos^2a}}{sin^2a}\\ =\dfrac{\dfrac{cos^4a+1-2cos^2a}{cos^2a}}{sin^2a}\\ =\dfrac{\dfrac{\left(1-cos^2a\right)^2}{cos^2a}}{sin^2a}\\ =\dfrac{sin^4a}{cos^2a}:sin^2a\\ =\dfrac{sin^4a}{cos^2a}\times\dfrac{1}{sin^2a}\\ =\dfrac{sin^2a}{cos^2a}=tan^2a\)