\(\sqrt{2008+\sqrt{2008+\sqrt{2008+...+\sqrt{2008}}}}\)
Trong biểu thức trên, số 2008 xuất hiện 2008 lần. Tính giá trị của biểu thức.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trước tiên ta cần chứng minh : \(1^2+n^2+\dfrac{n^2}{\left(n+1\right)^2}\text{=}\left(n+1-\dfrac{n}{n+1}\right)^2\)
\(\Leftrightarrow2.\left(\dfrac{n\left(n+1\right)}{n+1}-\dfrac{n}{n+1}-\dfrac{n^2}{n+1}\right)\text{=}0\)
\(\Leftrightarrow2.0\text{=}0\left(LĐ\right)\)
Ta có : \(E\text{=}\sqrt{1+2007^2+\dfrac{2007^2}{2008^2}}+\dfrac{2007}{2008}\)
Với bổ đề trên thì :
\(E\text{=}\sqrt{\left(2007+1-\dfrac{2007}{2008}\right)^2}+\dfrac{2007}{2008}\)
\(E\text{=}2008+\dfrac{2007}{2008}-\dfrac{2007}{2008}\)
\(E\text{=}2008\)
M = x.√[(2008+y²).(2008+z²)\(2008+x²)] + y.√[(2008+x²).(2008+z²)\(2008+y²)] + z.√[(2008+y²).(2008+x²)\(2008+z²)]
ta có:
2008 + x² = xy + xz + yz + x²
2008 + x² = (x+y).(x+z)
tương tự: 2008 + y² = (x+y).(y+z) và 2008 + z² = (z+y).(x+z)
chỉ việc thay vào rùi rút gọn thui
=> M = x.√[(x+y).(y+z).(x+z).(z+y)\ (x+y).(x+z)] + y.√[(x+y).(x+z).(x+z).(z+y)\(y+x).(y+z)] + z.√[(x+y).(x+z).(y+z).(y+x)\(x+z).(z+y)]
=> M = x.|y+z| + y.|z+x| + z.|x+y|
=> M = 2.2008
Thay \(xy+yz+xz=2018\) ta được:
\(\left\{{}\begin{matrix}2018+x^2=x^2+xy+yz+xz=\left(x+y\right)\left(x+z\right)\\2018+y^2=y^2+xy+yz+xz=\left(y+z\right)\left(x+y\right)\\2018+z^2=z^2+xy+yz+xz=\left(x+z\right)\left(y+z\right)\end{matrix}\right.\)
Sau đó thay vào lần lượt đề bài là được
x= ...... - ....... = a -b
P=(a-b)^3 + 3(a-b) +2018 = a^3-3a^2b+3ab^2-b^3 +3a-3b+2018
=a^3-b^3 -3a(ab-1) -3b(ab -1) +2018 = a^3-b^3 - 3(ab-1)(a+b) +2018
a.b = 1 => ab-1 =0 => P =a^3 -b^3 +2018=\(\sqrt{2}\)-1 -\(\frac{1}{\sqrt{2}-1}\)+2018
=\(\frac{2+1-2\sqrt{2}-1+2018\sqrt{2}-2018}{\sqrt{2}-1}\)=\(\frac{2016\sqrt{2}-2016}{\sqrt{2}-1}\)=2016
Vậy P=2016
Bài 1:
Ta có: \(a+b\ge2\sqrt{ab}\)
\(b+c\ge2\sqrt{bc}\)
\(a+c\ge2\sqrt{ac}\)
Do đó: \(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)
hay \(a+b+c\ge\sqrt{ab}+\sqrt{cb}+\sqrt{ac}\)