K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2019

a, \(2x^2-4xy+y^2=-1\)

=> \(\left(2x-y\right)^2=-1\)

=> \(2x-y=\sqrt{-1}\)

=> \(x;y\in\varnothing\)

b, \(3x^2+2xy+2y^2=7\)

=> :))

3 tháng 7 2019

hệ phương trình nha bạn ơi

Bài 2:

a: =>2x^2-4x+1=x^2+x+5

=>x^2-5x-4=0

=>\(x=\dfrac{5\pm\sqrt{41}}{2}\)

b: =>11x^2-14x-12=3x^2+4x-7

=>8x^2-18x-5=0

=>x=5/2 hoặc x=-1/4

NM
20 tháng 3 2022

từ phương trình số 2 ta có 
\(\left(x+y\right)\left(x+2y\right)+\left(x+y\right)=0\Leftrightarrow\left(x+y\right)\left(x+2y+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x+y=0\\x+2y+1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-y\\x=-2y-1\end{cases}}\)

lần lượt thay vào 1 ta có 

\(\orbr{\begin{cases}y^2+7=y^2+4y\\\left(-2y-1\right)^2+7=y^2+4y\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{7}{4}\\3y^2+8=0\end{cases}}}\)

vậy hệ có nghiệm duy nhất \(x=-y=-\frac{7}{4}\)

23 tháng 7 2021

giải hệ phương trình

 

21 tháng 8 2021

a)2x^2+xy-y^2-x+2y-1

=2x^2+xy-x-(y-1)^2

=2x^2+x(y-1)-(y-1)^2

=2a^2+ab-b^2         với a=x,b=y-1

=2a^2+2ab-ab-b^2

=(2a-b)(a+b)

=(2x-y+1)(x+y-1)

18 tháng 4 2022

đây bạn nếu bạn ko hiểu thì lên mạng gõ cách lm bất phương trình mũ 2

loading...nhowsloading...

21 tháng 4 2022

1c

2c

3a

17 tháng 9 2018

Đáp án đúng : C

15 tháng 10 2017

Giải sách bài tập Toán 12 | Giải sbt Toán 12

9 tháng 1 2021

Ta có \(2y^2⋮2\Rightarrow x^2\equiv1\left(mod2\right)\Rightarrow x^2\equiv1\left(mod4\right)\Rightarrow2y^2⋮4\Rightarrow y⋮2\Rightarrow x^2\equiv5\left(mod8\right)\) (vô lí).

Vậy pt vô nghiệm nguyên.

9 tháng 1 2021

2: \(PT\Leftrightarrow3x^3+6x^2-12x+8=0\Leftrightarrow4x^3=\left(x-2\right)^3\Leftrightarrow\sqrt[3]{4}x=x-2\Leftrightarrow x=\dfrac{-2}{\sqrt[3]{4}-1}\).

29 tháng 10 2023

`A= x^2+2xy-3x^2 +2y^2+3x^2-y^2`

`= (x^2-3x^2 +3x^2) +2xy +(2y^2 -y^2)`

`= x^2 +2xy +y^2`

`=(x+y)^2`

29 tháng 10 2023

A = \(x^2\) + 2\(xy\) - 3\(x^2\) + 2y2 + 3\(x^2\) - y2

A = (\(x^2\)- 3\(x^2\) + 3\(x^2\)) + 2\(xy\) + (2\(y^2\) - y2)

A = \(x^2\) + 2\(xy\) + y2

A = (\(x\) + y)2