rút gọn biểu thước hộ mình nha :
a) \(\sqrt{13-4\sqrt{3}}\)
b)\(\frac{\sqrt{4+\sqrt{7}}}{\sqrt{2}}\)
c) \(\frac{\sqrt{10+3\sqrt{11}}}{2.\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,=\sqrt{6+2\sqrt{3-2\sqrt{3}+1}}\)
\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}\)
\(=\sqrt{3+2\sqrt{3}+1}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)
\(b,=\sqrt{6-2\sqrt{3+\sqrt{12+2\sqrt{12}+1}}}\)
\(=\sqrt{6-2\sqrt{3+\sqrt{12}+1}}\)
\(=\sqrt{6-2\sqrt{3+2\sqrt{3}+1}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}=\sqrt{6-2\sqrt{3}-2}=\sqrt{4-2\sqrt{3}}\)
\(=\sqrt{3-2\sqrt{3}+1}=\sqrt{3}-1\)
\(c,=\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{4+2.2\sqrt{3}+3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{25-2.5\sqrt{3}+3}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}=\sqrt{5}\)
\(d,=\sqrt{23-6\sqrt{10+4\sqrt{2-2\sqrt{2}+1}}}\)
\(=\sqrt{23-6\sqrt{6+4\sqrt{2}}}\)
\(=\sqrt{23-6\sqrt{4+2.2\sqrt{2}+2}}\)
\(=\sqrt{23-6\sqrt{\left(2+\sqrt{2}\right)^2}}\)
\(=\sqrt{23-12-6\sqrt{2}}=\sqrt{11-6\sqrt{2}}\)
\(=\sqrt{9-2.3\sqrt{2}+2}=3-\sqrt{2}\)
a) Ta có: \(\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)
\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)
\(=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)
b) Ta có: \(\sqrt{6-2\sqrt{3+\sqrt{13+4\sqrt{3}}}}\)
\(=\sqrt{6-2\sqrt{4+2\sqrt{3}}}\)
\(=\sqrt{6-2\left(\sqrt{3}+1\right)}\)
\(=\sqrt{4-2\sqrt{3}}=\sqrt{3}-1\)
c) Ta có: \(\sqrt{\sqrt{3}+\sqrt{48-10\sqrt{7+4\sqrt{3}}}}\)
\(=\sqrt{\sqrt{3}+\sqrt{48-10\left(2+\sqrt{3}\right)}}\)
\(=\sqrt{\sqrt{3}+\sqrt{28-10\sqrt{3}}}\)
\(=\sqrt{\sqrt{3}+5-\sqrt{3}}\)
\(=\sqrt{5}\)
d) Ta có: \(\sqrt{23-6\sqrt{10+4\sqrt{3-2\sqrt{2}}}}\)
\(=\sqrt{23-6\sqrt{10+4\left(\sqrt{2}-1\right)}}\)
\(=\sqrt{23-6\sqrt{6-4\sqrt{2}}}\)
\(=\sqrt{23-6\left(2-\sqrt{2}\right)}\)
\(=\sqrt{11+6\sqrt{2}}\)
\(=3+\sqrt{2}\)
a) \(=\frac{7-4\sqrt{3}+7+4\sqrt{3}}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}=\frac{14}{49-48}=14\)
b) \(=\frac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\frac{5\sqrt{6}}{5}+\frac{4\sqrt{3}-12\sqrt{2}}{\sqrt{6}\left(\sqrt{3}-\sqrt{2}\right)}\)
\(C=\sqrt{4-2\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
\(\Leftrightarrow C=\sqrt{3-2\sqrt{3}+1}-\sqrt{4+4\sqrt{3}+3}\)
\(\Leftrightarrow C=\sqrt{\left(\sqrt{3}-1\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(\Leftrightarrow C=\left|\sqrt{3}-1\right|-\left|2+\sqrt{3}\right|\)
\(\Leftrightarrow C=\sqrt{3}-1-2-\sqrt{3}\)
\(\Leftrightarrow C=-3\)
\(\sqrt{13-4\sqrt{3}}=\sqrt{12+1-2\sqrt{12}}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1\)
\(\frac{\sqrt{4+\sqrt{7}}}{\sqrt{2}}=\frac{\sqrt{8+2\sqrt{7}}}{2}=\frac{\sqrt{7+1+2\sqrt{7}}}{2}=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{2}=\frac{\sqrt{7}+1}{2}\)
\(\frac{\sqrt{10+3\sqrt{11}}}{2\sqrt{2}}=\frac{\sqrt{20+2\sqrt{99}}}{2}=\frac{\sqrt{9+11+2\sqrt{99}}}{2}=\frac{\sqrt{\left(\sqrt{9}+\sqrt{11}\right)^2}}{2}=\frac{\sqrt{9}+\sqrt{11}}{2}\)