rut gon bt ;
a) \(\left(\sqrt{27}-2\sqrt{17}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
b) \(\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
c) \(9\sqrt{2}-4\sqrt{8}-\sqrt{50}+2\sqrt{32}\)
d) \(\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-câu rút gọn là câu có thể lược bỏ một số thành phần của câu.
lưu ý:ko lm cho người nghe,người đọc hiểu sai hoặc hiểu ko đầy đủ nội dung câu nói đó
ko biến câu nói thành một câu cộc lốc,khiếm nhã
TỰ LM NHA BN CÁI NÀY TRONG SGK NGỮ VĂN 7 ẤY
ĐỪNG HỎI NHƯNG CÂU MÀ CÓ SẴN TRONG SGK NỮA
LÀM MIK BẤM MÚN NÁT TAY
`@` `\text {Ans}`
`\downarrow`
`(2x - 3)^2 - (2x + 3)^2`
`= 4x^2 - 12x + 9 - (4x^2 + 12x + 9)`
`= 4x^2 - 12x + 9 - 4x^2 - 12x - 9`
`= (4x^2 - 4x^2) + (-12x - 12x) + (9-9)`
`= -24x`
____
`@` CT:
`(A + B)^2 = A^2 + 2AB + B^2`
`(A - B)^2 = A^2 - 2AB + B^2`
\(\left(2x-3\right)^2-\left(2x+3\right)^2\)
\(=\left[\left(2x-3\right)+\left(2x+3\right)\right]\left[\left(2x-3\right)-\left(2x+3\right)\right]\)
\(=\left(2x-3+2x+3\right)\left(2x-3-2x-3\right)\)
\(=4x\cdot-6\)
\(=-24x\)
Ta có: \(\dfrac{1}{2+\sqrt{3}}+\sqrt{3}\)
\(=2-\sqrt{3}+\sqrt{3}\)
=2
\(\dfrac{6}{\sqrt{2}-\sqrt{3}+3}\)
\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{\left(\sqrt{2}-\sqrt{3}\right)^2-9}\)
\(=\dfrac{6\left(\sqrt{2}-\sqrt{3}-3\right)}{-4-2\sqrt{6}}\)
\(=\dfrac{-3\left(\sqrt{2}-\sqrt{3}-3\right)}{2+\sqrt{6}}=\dfrac{-3\left(\sqrt{6}-2\right)\left(\sqrt{2}-\sqrt{3}-3\right)}{2}\)
Ta có: \(\dfrac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}\)
\(=\dfrac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{3}-1}\)
\(=\sqrt{2}\)
Ta có: \(\dfrac{2\sqrt{3}}{\sqrt{3}+\sqrt{2}}+\sqrt{24}\)
\(=2\sqrt{3}\left(\sqrt{3}-\sqrt{2}\right)+2\sqrt{6}\)
\(=6-2\sqrt{6}+2\sqrt{6}\)
=6
(x-3)3-(x+3)3=(a3-9x2+27x-27)-(x3+9x2+27x+27)
=x3-9x2+27x-27-x3-9x2-27x-27
=-18x2-54
\(a,\left(\sqrt{27}-2\sqrt{17}+\sqrt{7}\right)\cdot\sqrt{7}+7\sqrt{8}\)
\(=3\sqrt{21}-2\sqrt{119}+7+7\sqrt{8}\)
Đề sai chăng???
\(b,\sqrt{3-2\sqrt{2}}+\sqrt{3+2\sqrt{2}}\)
\(=\sqrt{2-2\sqrt{2}+1}+\sqrt{2+2\sqrt{2}+1}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(\sqrt{2}+1\right)^2}\)
\(=\sqrt{2}-1+\sqrt{2}+1\)
\(=2\sqrt{2}\)
\(c,9\sqrt{2}-4\sqrt{8}-\sqrt{50}+2\sqrt{32}\)
\(=9\sqrt{2}-8\sqrt{2}-5\sqrt{2}+8\sqrt{2}\)
\(=\sqrt{2}\left(9-8-5+8\right)\)
\(=4\sqrt{2}\)
\(d,\sqrt{3-2\sqrt{2}}-\sqrt{6+4\sqrt{2}}\)
\(=\sqrt{2-2\sqrt{2}+1}-\sqrt{4+2.2\sqrt{2}+2}\)
\(=\sqrt{\left(\sqrt{2}-1\right)^2}-\sqrt{\left(2+\sqrt{2}\right)^2}\)
\(=\sqrt{2}-1-2-\sqrt{2}\)
\(=-3\)