Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐK:x>0,x\(\ne\)9
\(C=\left(\dfrac{\sqrt{x}}{3+\sqrt{x}}+\dfrac{x+9}{9-x}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}-\dfrac{x+9}{x-9}\right)\div\left(\dfrac{3\sqrt{x}+1}{x-3\sqrt{x}}-\dfrac{1}{\sqrt{x}}\right)=\left[\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right]\div\left[\dfrac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\dfrac{\sqrt{x}-3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right]=\dfrac{x-3\sqrt{x}-x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\div\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}=\dfrac{-3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\dfrac{-3\left(\sqrt{x}+3\right).\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)\left(2\sqrt{x}+4\right)}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
a: Sửa đề; \(P=\left(\dfrac{3x+3\sqrt{x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}-1}\right)\cdot\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
\(=\dfrac{3x+3\sqrt{x}-3-x+1+x-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{3x+3\sqrt{x}-6}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}\cdot\dfrac{\sqrt{x}}{1-\sqrt{x}}=\dfrac{3\sqrt{x}}{1-\sqrt{x}}\)
b: Để \(P=\sqrt{x}\) thì \(3\sqrt{x}=\sqrt{x}-x\)
\(\Leftrightarrow x+2\sqrt{x}=0\)
hay x=0
a/ ĐKXĐ: \(x\ge0,x\ne1\)
\(P=\left(\dfrac{3}{\sqrt{x}-1}+\dfrac{\sqrt{x}-3}{x-1}\right):\left(\dfrac{x+2}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}}{\sqrt{x}+2}\right)\)
= \(\dfrac{3\left(\sqrt{x}+1\right)+\sqrt{x}-3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{x+2-\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}:\dfrac{\sqrt{x}+2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\)
= \(\dfrac{4\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
= \(\dfrac{4\sqrt{x}}{\sqrt{x}+1}\)
b/ Với \(x\ge0,x\ne1\)
Để \(P=\sqrt{x}-1\Leftrightarrow\dfrac{4\sqrt{x}}{\sqrt{x}+1}=\sqrt{x}-1\)
\(\Leftrightarrow4\sqrt{x}=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)
\(\Leftrightarrow x-4\sqrt{x}-1=0\)
\(\Leftrightarrow\left(\sqrt{x}-2+\sqrt{5}\right)\left(\sqrt{x}-2-\sqrt{5}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}-2+\sqrt{5}=0\\\sqrt{x}-2-\sqrt{5}=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x}=2-\sqrt{5}\left(ktm\right)\\\sqrt{x}=2+\sqrt{5}\left(tm\right)\end{matrix}\right.\)
\(\Leftrightarrow x=9+4\sqrt{5}\)
Vậy để \(P=\sqrt{x}-1\) thì \(x=9+4\sqrt{5}\)
\(=\left(\sqrt{x}+\sqrt{x-1}-\sqrt{x-1}+\sqrt{2}\right)\cdot\left(\dfrac{2\sqrt{x}-\sqrt{x}-\sqrt{2}}{\sqrt{x}\left(2-\sqrt{x}\right)}\right)\)
\(=\dfrac{\left(\sqrt{x}+\sqrt{2}\right)}{-\sqrt{x}}\)
điều kiện xác định : \(x>0;x\ne1\)
ta có : \(\left(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\left(\dfrac{\sqrt{x}+1}{x-1}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}+1}\right)\)
\(=\left(\dfrac{\sqrt{x}+1}{\sqrt{x}}\right)\left(\sqrt{x}-1\right)=\dfrac{x-1}{\sqrt{x}}\)
sữa đề chút
\(\dfrac{x-1}{\sqrt{x}\left(\sqrt{x-1}\right)}:\dfrac{\sqrt{x}+1}{x-1}=\dfrac{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\sqrt{x}\left(\sqrt{x-1}\right)}.\dfrac{x-1}{\sqrt{x}+1}=\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x-1}\right)}{\sqrt{x}}\)
Cho \(5\sqrt{x}7\) mk viet nham
Sua lai thanh \(5\sqrt{x}-7\)
a: \(A=\left(\dfrac{2}{\sqrt{x}-2}+\dfrac{3}{2\sqrt{x}+1}-\dfrac{5\sqrt{x}-7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\right)\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{4\sqrt{x}+2+3\sqrt{x}-6-5\sqrt{x}+7}{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}\cdot\dfrac{5\sqrt{x}\left(\sqrt{x}-2\right)}{2\sqrt{x}+3}\)
\(=\dfrac{2\sqrt{x}+3}{\left(2\sqrt{x}+1\right)}\cdot\dfrac{5\sqrt{x}}{2\sqrt{x}+3}=\dfrac{5\sqrt{x}}{2\sqrt{x}+1}\)
b: Để A là số nguyên thì \(5\sqrt{x}⋮2\sqrt{x}+1\)
=>10 căn x+5-5 chia hết cho 2 căn x+1
=>\(2\sqrt{x}+1\in\left\{1;5\right\}\)
hay \(x\in\varnothing\)
\(C=\dfrac{\sqrt{\dfrac{4x^2+4x+1}{x}}}{\sqrt{x}\cdot\left|2x^2-x-1\right|}=\dfrac{\left|2x+1\right|}{\sqrt{x}}\cdot\dfrac{1}{\sqrt{x}\cdot\left|\left(x-1\right)\left(2x+1\right)\right|}\)
\(=\dfrac{1}{x\left|x-1\right|}\)