Cho tứ giác ABCD có AD=BC. Gọi AC cắt BD tại I. K và L lần lượt là tâm nội tiếp của tam giác AID và tam giác BIC. M và N lần lượt là trung điểm của AB và CD. Chứng minh rằng MN chia đôi KL ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi M là trung điểm BC ; N là điểm đối xứng với H qua M.
M là trung điểm của BC và HN nên BNCH là hình bình hành
\(\Rightarrow NC//BH\)
Mà \(BH\perp AC\Rightarrow NC\perp AC\)hay AN là đường kính của đường tròn ( O )
Dễ thấy OM là đường trung bình \(\Delta AHN\) suy ra \(OM=\frac{1}{2}AH\)
M là trung điểm BC nên OM \(\perp\)BC
Xét \(\Delta AHG\)và \(\Delta OGM\)có :
\(\widehat{HAG}=\widehat{GMO}\); \(\frac{GM}{GA}=\frac{OM}{HA}=\frac{1}{2}\)
\(\Rightarrow\Delta AGH~\Delta MOG\left(c.g.c\right)\Rightarrow\widehat{AGH}=\widehat{MGO}\)hay H,G,O thẳng hàng
gọi E,F,T lần lượt là trung điểm của AB,CD,BD
Đường thẳng ME cắt NF tại S
Vì AC = BD \(\Rightarrow EQFP\)là hình thoi \(\Rightarrow EF\perp PQ\)( 1 )
Xét \(\Delta TPQ\)và \(\Delta SEF\)có : \(ME\perp AB,TP//AB\)
Tương tự , \(NF\perp CD;\)\(TQ//CD\)
\(\Rightarrow\Delta TPQ~\Delta SEF\)( Góc có cạnh tương ứng vuông góc )
\(\Rightarrow\frac{SE}{SF}=\frac{TP}{TQ}=\frac{AB}{CD}\)
Mặt khác : \(\Delta MAB~\Delta NCD\Rightarrow\frac{AB}{CD}=\frac{ME}{NF}\)( tỉ số đường cao = tỉ số đồng dạng )
Suy ra : \(\frac{ME}{NF}=\frac{SE}{SF}\)\(\Rightarrow EF//MN\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra \(MN\perp PQ\)
Gọi E và F lần lượt là trung điểm của PA và PD.
Ta thấy: \(\Delta\)PAK vuông tại K có trung tuyến KE => KE = 1/2.AP. Mà MF là đường trung bình \(\Delta\)PAD
Nên KE = MF (=1/2AP). Tương tự: FL = ME. Ta có: ^KEM = ^MFL (= ^PFM + Sđ(BC = ^PEM + Sđ(BC )
Suy ra: \(\Delta\)KEM = \(\Delta\)MFL (c.g.c) => KM = ML (Cạnh tương ứng)
Ta thấy: ^KML = ^EMF - ^EMK - ^FML = 1800 - ^PFM - ^FLM - ^FML (^EMK = ^ FLM vì \(\Delta\)KEM = \(\Delta\)MFL)
= ^PFL = 2.^PDL = 2.^PAK => ^KML = 2.^PDL = 2.^PAK
Ta lại có: ^BDT = ^BDC - ^TDL = 1/2.^KML - (900 - ^DML) = 1/2.^KML - ^OML = ^OMK - 1/2.^KML
= ^OMK - ^PAK = ^SAK - ^PAK = ^CAS => ^BDT = ^CAS
Mặt khác: ^MTL = ^AOC = 2.^MDL (=Sđ(AC ) => \(\Delta\)MLT ~ \(\Delta\)ACO (g.g)
=> \(\frac{LT}{CO}=\frac{ML}{AC}\)=> LT. AC = ML.CO = MK.BO (Do ML = MK). Tương tự \(\Delta\)KSM ~ \(\Delta\)BOD
Từ đó; LT.AC = MK.BO = KS.BD => DT.AC = AS.DB => \(\frac{DT}{AS}=\frac{DB}{AC}\). Kết hợp với ^BDT = ^CAS (cmt)
=> \(\Delta\)CSA ~ \(\Delta\)BTD (c.g.c) => \(\frac{CS}{BT}=\frac{SA}{TD}=\frac{KS}{LT}\)=> KS.BT = CS.LT (đpcm).
a: Hình thang ABCD có
M là trung điểm của AD
N là trung điểm của BC
Do đó: MN là đường trung bình của hình thang ABCD
Suy ra: MN//BA//CD
Xét ΔAMI có \(\widehat{MAI}=\widehat{MIA}\left(=\widehat{IAB}\right)\)
nên ΔAMI cân tại M
Xét ΔBKN có \(\widehat{NKB}=\widehat{NBK}\left(=\widehat{ABK}\right)\)
nên ΔBKN cân tại N
b: Xét ΔAID có
IM là đường trung tuyến ứng với cạnh AD
\(IM=\dfrac{AD}{2}\left(=AM\right)\)
nên ΔIAD vuông tại I
Xét ΔBKC có
KN là đường trung tuyến ứng với cạnh BC
\(KN=\dfrac{BC}{2}\left(=BN\right)\)
nên ΔBKC vuông tại K