K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2019

Tự vẽ hình nhé!

a, MN;MP là 2 tiếp tuyến của đường tròn (O) (gt)

\(\Rightarrow\widehat{ONM}=\widehat{OPM}=90^0\Rightarrow\) Tứ giác MNOP nội tiếp ngược

\(\Rightarrow\widehat{NMO}=\widehat{NPO}\)( hai góc nội tiếp cùng chắn chung NO)

b, Gọi C là trung điểm dây AB ta có C cố định

(d) không qua O nên \(OC\perp AB\)

            \(\widehat{OCM}=\widehat{OMN}=\widehat{OPM}=90^0\)

\(\Rightarrow\) C ; N ; P thuộc đường tròn đường kính OM

\(\Rightarrow\) C ; N ; P ; O ; M cùng thuộc một đường tròn

Mà O và C cố định

Do đó đường tròn ngoại tiếp tam giác MNP đi qua 2 điểm cố định O và C khi M lưu động trên đường thẳng (d)

c, Tứ giác MNOP là hình vuông 

\(\Leftrightarrow\) Hình thoi MNOP có \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\) Tứ giác MNOP có MN = ON = OP = PM và \(\widehat{ONM}=90^0\)

\(\Leftrightarrow\)Tam giác OMN vuông cân tại N  \(\Leftrightarrow\) \(OM=ON\sqrt{2}=R\sqrt{2}\)

\(\Leftrightarrow\) M là giao điểm của đường tròn tâm O bán kính \(R\sqrt{2}\) và đường thẳng (d)

d, từ nghĩ đã...

\(\Leftrightarrow\) MN = ON = R ; \(\widehat{ONM}=90^0\)

1 tháng 7 2019

cái dòng cuối cùng của ý d là dòng thứ 4 của ý c nhé, bị nhầm đó

d, Làm tiếp:

Giả sử đoạn thẳng OM cắt đường tròn (O) tại I'

OM là tia phân giác \(\widehat{NOP}\)( vì MN;MP là 2 tiếp tuyến của (O))

\(\Rightarrow\widehat{NOM}=\widehat{POM}\Rightarrow\widebat{NI'}=\widebat{PI'}\)

\(sđ\widehat{NPI'}=\frac{1}{2}sđ\widebat{NI'}\)     ;   \(sđ\widehat{MPI'}=\frac{1}{2}sđ\widehat{PI'}\)

Do đó \(\widehat{NPI'}=\widehat{MPI'}\Rightarrow\) PI' là tia phân giác \(\widehat{MPN}\)

\(\Delta MPN\)có MI' là tia phân giác \(\widehat{NMP}\)( vì MN và MP là 2 tiếp tuyến ) và PI' là tia phân giác \(\widehat{MPN}\)nên I' là tâm đường tròn nội tiếp tam giác MNP 

Do đó \(I'\equiv I\)mà I' thuộc đường tròn (O;R)

Mặt khác :  O , I cùng thuộc nửa mặt phẳng bờ d

Do đó I lưu động trên cung lớn AB của đưởng tròn tâm O bán kính R

24 tháng 12 2021

a: Xét (O) có 

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

hay BC⊥AD

2 tháng 11 2018

O M A B D C E F I

Gọi I là trung điểm OM

Vì E là trung điểm của dây AB

=> OE \(\perp\) AB

Xét tam giác OEM vuông tại E có EI là trung tuyến

=> EI = OI = IM

Tương tự  : FI = OI = IM

=> EI = IF = OI = IM

=> 4 điểm M , O , E , F cùng thuộc đường tròn tâm I

16 tháng 7 2020

O M Q E I P D

Ta có: MD = ME ( tính chất hai tiếp tuyến cắt nhau )

PD = PI ( tính chất hai tiếp tuyến cắt nhau )

QI = QE ( tính chất hai tiếp tuyến cắt nhau )

Chu vi tam giác APQ bằng:

MP + PQ + QM

= MP + PI + IQ + QM

= MP + PD + QM + QE

= MD + ME

= 2 . MD

= 2 . 4 = 8 ( cm )

3 tháng 4 2016

c) Kẻ OI vuông góc với BC tại I thì OI không đổi, vì BC cố định.

Theo t/c đường kính và dây thì I là trung điểm của BC.

cm tương tự câu b) để có BD // CF, suy ra tứ giác BHCF là hình bình hành mà I là trung điểm của BC suy ra I là trung điểm của HF

Vậy OI là đường tb của tam giác AHF => AH = 2.OI không đổi

3 tháng 4 2016

mình cảm ơn nhiều nhé

5 tháng 5 2016

câu a là tứ giác ABME nhé