K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
30 tháng 6 2019

\(\Leftrightarrow2sin2x.cos2x=0\)

\(\Leftrightarrow sin4x=0\)

\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)

3 tháng 7 2019

\(\left[{}\begin{matrix}sin2x=0\\cos2x=0\end{matrix}\right.=>\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{\pi}{4}+\frac{k\pi}{2}\end{matrix}\right.k\varepsilon}Z}\)

5 tháng 8 2021

\(sin^2x+cosx.cos3x+sin2x.cos2x=0\)

\(\Leftrightarrow sin^2x+\dfrac{1}{2}cos4x+\dfrac{1}{2}cos2x+\dfrac{1}{2}sin4x=0\)

\(\Leftrightarrow sin^2x+\dfrac{1}{2}-sin^2x+\dfrac{1}{2}sin4x+\dfrac{1}{2}cos4x=0\)

\(\Leftrightarrow sin4x+cos4x=-1\)

\(\Leftrightarrow\sqrt{2}sin\left(4x+\dfrac{\pi}{4}\right)=-1\)

\(\Leftrightarrow sin\left(4x+\dfrac{\pi}{4}\right)=-\dfrac{1}{\sqrt{2}}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x+\dfrac{\pi}{4}=-\dfrac{\pi}{4}+k2\pi\\4x+\dfrac{\pi}{4}=\dfrac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{\pi}{8}+\dfrac{k\pi}{2}\\x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\end{matrix}\right.\)

\(VT=sin^4x\cdot\dfrac{cos^2x}{sin^2x}+cos^4x\cdot\dfrac{sin^2x}{cos^2x}+sin^4x-sin^2x\cdot cos^2x\)

\(=sin^2x\cdot cos^2x+cos^2x\cdot sin^2x+sin^4x-sin^2x\cdot cos^2x\)

\(=sin^2x\left(sin^2x+cos^2x\right)=sin^2x=VP\)

27 tháng 9 2020

\(\sin4x=2\sin2x.\cos2x\)

\(\Rightarrow\sin2x.\cos2x=\frac{1}{2}\sin4x\)

\(-1\le\sin4x\le1\)

\(\Rightarrow\frac{-1}{2}\le\frac{1}{2}\sin4x\le\frac{1}{2}\Rightarrow\left\{{}\begin{matrix}y_{max}=\frac{1}{2};"="\Leftrightarrow x=\frac{\pi}{2}+k2\pi\\y_{min}=-\frac{1}{2};"="\Leftrightarrow x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

5 tháng 3 2019

Chọn C.

Ta có

C = [ ( sin2x + cos2x) – sin2cos2x]2 - [ ( sin4x + cos4x) 2 - 2sin4x.cos4x]

= 2[ 1-sin2x.cos2x]2 - [ ( sin2x + cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x

= 2[ 1-sin2x.cos2x]2 - [1-sin2x.cos2x]2 + 2sin4x.cos4x

= 2( 1 - 2sin2x.cos2x + sin4x.cos4x)- ( 1 - 4sin2xcos2x + 4sin4x.cos4x) + 2sin4x.cos4x

= 1.

NV
15 tháng 7 2020

a/ ĐKXĐ: \(cosx\ne-\frac{1}{2}\)

\(\Leftrightarrow2cosx-1=6cosx+3\)

\(\Leftrightarrow4cosx=-4\Rightarrow cosx=-1\)

\(\Rightarrow x=\pi+k2\pi\)

b/

\(\Leftrightarrow cosx\left(2cos2x-1\right)-3cosx=0\)

\(\Leftrightarrow cosx\left(2cos2x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos2x=2\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=\frac{\pi}{2}+k\pi\)

c/

\(\Leftrightarrow2sin2x.cos2x=0\)

\(\Leftrightarrow sin4x=0\)

\(\Rightarrow4x=k\pi\Rightarrow x=\frac{k\pi}{4}\)

16 tháng 11 2018

2 tháng 7 2018

Chọn C.

Ta có: C = 2( sin4x + cos4x + sin2x.cos2x) 2 - ( sin8x + cos8x)

= 2 [ (sin2x + cos2x) 2 - sin2x.cos2x]2 - [ (sin4x + cos4x)2 - 2sin4x.cos4x]

= 2[ 1 - sin2x.cos2x]2 - [ (sin2x+ cos2x) 2 - 2sin2x.cos2x]2 + 2sin4x.cos4x

= 2[ 1- sin2x.cos2x]2 - [ 1 - 2sin2x.cos2x]2  + 2sin4x.cos4x

= 2( 1 - 2sin2xcos2x+ sin4x.cos4x) –( 1- 4sin2xcos2x+ 4sin4xcos4x) + 2sin4x.cos4x

=  1.