K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2019

\(\frac{1}{55.56}-\frac{1}{56.57}-\frac{1}{57.58}-...-\frac{1}{100.101}\)

\(-\left(\frac{1}{55.56}+\frac{1}{56.57}+\frac{1}{57.58}+...+\frac{1}{100-101}\right)\)

\(-\left(\frac{1}{55}-\frac{1}{56}+\frac{1}{56}-\frac{1}{57}+\frac{1}{57}-\frac{1}{58}+...+\frac{1}{100}-\frac{1}{101}\right)\)

\(-\left(\frac{1}{55}-\frac{1}{101}\right)\)

\(-\frac{56}{5555}\)

30 tháng 4 2016

Đặt \(A=\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\)

\(\Rightarrow A< \left(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}\right)+\left(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{99.100}\right)\)

\(\Rightarrow A< \frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{99.100}+\frac{1}{100.101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{100}+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A< \frac{1}{2}-\frac{1}{101}< \frac{1}{2}\)

\(\Rightarrow A< \frac{1}{2}\)

Vậy \(\frac{1}{2.3}+\frac{1}{4.5}+\frac{1}{6.7}+...+\frac{1}{100.101}< 2\) (đpcm)

30 tháng 4 2016

Mai ơi, bài này thầy dạy hôm chiều cậu nghỉ đóoaoa

27 tháng 4 2017

A= 1/1-1/2+1/2-1/3+1/4-1/5+...+1/101-1/102

A=1-1/102=102/102-1/102=101/102

ý b thì chờ mình tí tìm cách lập luận đã nhé

27 tháng 4 2017

A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{100.101}+\frac{1}{101.102}\)

\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{101}-\frac{1}{102}\)

\(A=1-\frac{1}{102}\)

\(A=\frac{101}{102}\)

11 tháng 3 2015

trên violympic phải ko, mình vừa mới giải xong nè

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.... +\frac{1}{100}-\frac{1}{101}\)

triệt tiêu từ từ cuối cùng còn 1 - 1/101 =100/101 = 0,99000000...ĐS: A< 1 
30 tháng 7 2019

Ta có:

\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{100.101}\)

\(\Rightarrow A=1-\frac{1}{2}=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{100}-\frac{1}{101}\)

\(\Rightarrow A=1-\frac{1}{101}=\frac{100}{101}< 1\)

Vậy : \(A< 1\)

~ Rất vui vì giúp đc bn ~ ^_<

3 tháng 8 2017

Ta có:

\(\frac{1}{100.101}+\frac{1}{101.102}+...+\frac{1}{2010.2011}\)

\(=\frac{1}{100}-\frac{1}{101}+\frac{1}{101}-\frac{1}{102}+...+\frac{1}{2010}-\frac{1}{2011}\)

\(=\frac{1}{100}-\frac{1}{2011}\)

\(=\frac{1911}{201100}\)

3 tháng 8 2017

Ta có : \(\frac{1}{100.101}\)\(\frac{1}{101.102}\)+.....+\(\frac{1}{2010.2011}\)

\(\frac{1}{100}\)\(\frac{1}{101}\)\(\frac{1}{101}\)\(\frac{1}{102}\)+.....+ \(\frac{1}{2010}\)-\(\frac{1}{2011}\) 

\(\frac{1}{100}\)\(\frac{1}{2011}\) = .... Tự tính tiếp nhé bạn 

7 tháng 4 2015

a)    \(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\)

      \(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\)

\(\Rightarrow3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^7}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^8}\right)\)(áp dụng quy tắc dấu ngoặt )

\(3A-A=1+\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^7}-\frac{1}{3}-\frac{1}{3^2}-\frac{1}{3^3}-...-\frac{1}{3^8}\)

\(3A-A=1+\left(\frac{1}{3}-\frac{1}{3}\right)+\left(\frac{1}{3^2}-\frac{1}{3^2}\right)+...+\left(\frac{1}{3^7}-\frac{1}{3^7}\right)-\frac{1}{3^8}\)

\(\Rightarrow2A=1+0+0...+0-\frac{1}{3^8}\)

     \(2A=1-\frac{1}{3^8}\)

     \(2A=\frac{3^8-1}{3^8}\)

     \(A=\frac{3^8-1}{3^8}\div2=\frac{3^8-1}{3^8}.\frac{1}{2}=\frac{3^8-1}{3^8.2}\)

b)   \(B=\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{100.101}\)

     \(\Rightarrow B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{100}-\frac{1}{101}\)(áp dụng quy tắc dấu ngoặt )

      \(B=\frac{1}{1}-\left(\frac{1}{2}-\frac{1}{2}\right)-\left(\frac{1}{3}-\frac{1}{3}\right)-...-\left(\frac{1}{100}-\frac{1}{100}\right)-\frac{1}{101}\)

     \(B=\frac{1}{1}-0-0-0...-0-\frac{1}{101}\)

      \(B=\frac{1}{1}-\frac{1}{101}\)

      \(B=\frac{100}{101}\)

7 tháng 4 2015

B=1/1-1/2+1/2-1/3+1/3-1/4+...+

3 tháng 5 2018

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}...\frac{100.100}{100.101}\)

\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4...100.101}\)

\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3....100\right).\left(2.3.4...101\right)}\)

\(=\frac{1.1}{1.101}\)

\(=\frac{1}{101}\)

3 tháng 5 2018

\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}.....\frac{100^2}{100\cdot101}\)

\(=\frac{1.1}{1\cdot2}\cdot\frac{2.2}{2.3}\cdot\frac{3.3}{3.4}.....\frac{100.100}{100.101}\)

\(=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot100\right)\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot101\right)}\)

\(=\frac{1}{101}\)

11 tháng 4 2017

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)

\(=1.\frac{1}{101}=\frac{1}{101}\)

11 tháng 4 2017

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)

\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)

\(=\frac{1}{101}\)