K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.......\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1.2.3.....100}{1.2.3....100}.\frac{1.2.3....100}{2.3.4...101}\)

\(=1.\frac{1}{101}=\frac{1}{101}\)

11 tháng 4 2017

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{99}{100}.\frac{100}{101}\)

\(=\frac{1.2.3...99.100}{2.3.4...100.101}\)

\(=\frac{1}{101}\)

2 tháng 3 2018

tao dóe biet

2 tháng 3 2018

a,1^2/1.2 . 2^2/2.3 . 3^2/3.4 ... 99^2/99.100 . 100^2/100.101

= 1/2 . 2/3 . 3/4 ... 99/100 . 100/101

=( 2.3.4....100/2.3.4...100) . 1/101

= 1 . 1/101

=1/101

ý b tương tự nhé !

3 tháng 5 2018

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}...\frac{100^2}{100.101}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}...\frac{100.100}{100.101}\)

\(=\frac{1.1.2.2.3.3...100.100}{1.2.2.3.3.4...100.101}\)

\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3....100\right).\left(2.3.4...101\right)}\)

\(=\frac{1.1}{1.101}\)

\(=\frac{1}{101}\)

3 tháng 5 2018

\(\frac{1^2}{1\cdot2}\cdot\frac{2^2}{2\cdot3}\cdot\frac{3^2}{3\cdot4}.....\frac{100^2}{100\cdot101}\)

\(=\frac{1.1}{1\cdot2}\cdot\frac{2.2}{2.3}\cdot\frac{3.3}{3.4}.....\frac{100.100}{100.101}\)

\(=\frac{\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot\cdot100\right)\left(1\cdot2\cdot3\cdot\cdot\cdot\cdot\cdot100\right)}{\left(1\cdot2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot100\right)\cdot\left(2\cdot3\cdot4\cdot\cdot\cdot\cdot\cdot101\right)}\)

\(=\frac{1}{101}\)

\(\frac{1.1}{1.2}.\frac{2.2}{2.3}\frac{3.3}{3.4}...\frac{100.100}{100.101}\)

\(=\frac{\left(1.2.3...100\right).\left(1.2.3...100\right)}{\left(1.2.3...100\right).\left(2.3...101\right)}\)

\(=\frac{1}{1.101}\)

\(=\frac{1}{101}\)

k cho mk nha

31 tháng 3 2020

Bg

a)\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.....\frac{99^2}{99.100}.\frac{100^2}{100.101}\)

\(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)

\(=\frac{1^2}{101}\)

\(=\frac{1}{101}\)

Ghi chú: \(=\frac{1^2.2^2.3^2.....99^2.100^2}{1.2.2.3.3.4.....99.100.100.101}\)--> 22 chịt tiêu 2.2 (trên và dưới) làm thế này mãi đến khi còn \(\frac{1^2}{101}\).

b) \(\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{59^2}{58.60}\)

=\(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)

\(\frac{2}{1}.\frac{59}{60}\)

\(\frac{59}{30}\)

Ghi chú: \(\frac{2^2.3^2.4^2.....59^2}{1.3.2.4.3.5.....58.60}\)--> chịt tiêu liên tục, còn \(\frac{2}{1}.\frac{59}{60}\).

24 tháng 3 2017

a,\(\frac{1.1.2.2.3.3....99.99.100.100}{1.2.2.3.3.4...99.100.100.101}\)=\(\frac{\left(1.2.3...99.100\right)\left(1.2.3...99.100\right)}{\left(1.2.3.4...99.100\right)\left(2.3.4...100.101\right)}\)=\(\frac{1.1}{101}\)=\(\frac{1}{101}\). ý b làm tương tự nha

3 tháng 4 2018

\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.............\frac{100^2}{100.101}\)

\(=\frac{1.1}{1.2}.\frac{2.2}{2.3}.\frac{3.3}{3.4}..........\frac{100.100}{100.101}\)

\(=\frac{\left(1.2.3............100\right).\left(1.2.3..........100\right)}{\left(1.2.3..........100\right)\left(2.3.4...........101\right)}\)

\(=\frac{1}{101}\)

30 tháng 6 2016

1) Ta có: \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

    \(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

      \(=1-\frac{1}{100}< 1\)

Vậy \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}< 1\)

30 tháng 6 2016

1) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}\)

\(=\frac{99}{100}< 1\)

2)\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

 \(\frac{1}{2^2}< \frac{1}{1.2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}\)

\(...\)

\(\frac{1}{99^2}< \frac{1}{98.99}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{99^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}\)

\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}>\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(1-\frac{1}{99}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}< \frac{99}{100}< 1\)

\(\frac{98}{99}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\frac{1}{2.3}< \frac{1}{2^2}\)

\(\frac{1}{3.4}< \frac{1}{3^2}\)

\(...\)

\(\frac{1}{99.100}< \frac{1}{99^2}\)

\(\Rightarrow\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\frac{1}{2}-\frac{1}{100}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}\)

\(\frac{49}{100}< \frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{99^2}< 1\)