K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 2 2020

Em vừa nghĩ ra 2 cách làm bằng kiến thức lớp 7, co check giùm em nhé!

Ta có: \(\widehat{CAD}=90^0-\widehat{DAB}\)

và \(\widehat{CDA}=90^0-\widehat{HAD}\)

Mà \(\widehat{DAB}=\widehat{HAD}\left(gt\right)\Rightarrow AC=DC\)

Tương tự ta có: AB = EB

\(\Rightarrow AB+AC=EB+DC\)

\(=ED+DB+DC=DE+BC\)

\(\Rightarrow DE=AB+AC-BC=3+4-5=2\left(cm\right)\)

Vậy DE = 2 cm

2 tháng 2 2020

A B C H D E

Ta có: \(\Delta\)ABC vuông tại A

=> BC\(^2\)=AB\(^2\)+ AC\(^2\)= 3\(^2\)+ 4\(^2\)=  25 => BC = 5 (cm)

Có: \(\frac{1}{AH^2}=\frac{1}{AC^2}+\frac{1}{AB^2}=\frac{1}{3^2}+\frac{1}{4^2}=\frac{25}{144}\)

=> AH = 2,4  (cm)

Có: \(CH=\frac{AC^2}{BC}=\frac{4^2}{5}=3,2\)(cm)

=> BH = 5 - 3,2 = 1,8 ( cm )

AE là phân giác ^CAH => \(\frac{EC}{EH}=\frac{AC}{AH}=\frac{4}{2,4}\) mà EC + EH = CH = 3,2 

=> EC = 2 ( cm ) ; EH = 1,2 ( cm )

AD là phân giác ^BAH  => \(\frac{DH}{DB}=\frac{AH}{AB}=\frac{2,4}{3}\); mà DH + DB = HB = 1,8 

=> DH = 0,8 ( cm ) ; BD = 1( cm )

Vậy DE = DH + HE = 0,8 + 1,2 = 2 ( cm )

23 tháng 4 2021

a)  Xét tam giác BHA và tam giác BAC có

góc BHA= góc BAC (=90)

góc B chung

=> tam giác BHA đồng dạng tam giác BAC (g.g)

2 tháng 2 2020

https://hoidap247.com/cau-hoi/111101 bạn có thể tham khảo ở đây nha. Chúc bạn học tốt !!!!!!!

10 tháng 2 2018

kho ua

16 tháng 12 2023

loading... a) Sửa đề: Chứng minh ABH = DBH

Giải:

Xét hai tam giác vuông: ∆ABH và ∆DBH có:

BH là cạnh chung

AH = DH (gt)

⇒ ∆ABH = ∆DBH (hai cạnh góc vuông)

⇒ ∠ABH = ∠DBH (hai góc tương ứng)

⇒ BH là tia phân giác của ∠ABD

b) Do DM // AB (gt)

⇒ ∠MDH = ∠HAB (so le trong) (1)

Do ∆ABH = ∆DBH (cmt)

⇒ ∠HAB = ∠HDB (hai góc tương ứng) (2)

Từ (1) và (2) ⇒ ∠MDH = ∠HDB

Xét hai tam giác vuông: ∆DHM và ∆DHB có:

DH là cạnh chung

∠MDH = ∠HDB (cmt)

⇒ ∆DHM = ∆DHB (cạnh góc vuông - góc nhọn kề)

⇒ ∠DHM = ∠DHB (hai góc tương ứng)

Mà ∠DHM + ∠DHB = 180⁰ (kề bù)

⇒ ∠DHM = ∠DHB = 180⁰ : 2 = 90⁰

⇒ DH ⊥ BM (3)

Do ∆DHM = ∆DHB (cmt)

⇒ HM = HB

⇒ H là trung điểm của BM (4)

Từ (3) và (4) ⇒ HD là đường trung trực của BM

⇒ AD là đường trung trực của BM

c) Do AD là đường trung trực của BM (cmt)

⇒ AD ⊥ CH

Do DK // AB (gt)

⇒ DK ⊥ AC (AB ⊥ AC)

∆ACD có:

CH là đường cao (CH ⊥ AD)

DK là đường cao thứ hai (DK ⊥ AC)

⇒ AM là đường cao thứ ba

Mà AM ⊥ CN tại N

⇒ AN là đường cao thứ ba của ∆ACD

⇒ C, N, D thẳng hàng