K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2019

TL:

Ta có:

\(x^2-3x+3=x^2-3x+2,25+0,75\) 

=\(\left(x-1,5\right)^2+0,75\) 

mà:\(\left(x-1,5\right)^2\ge0\forall x\in R\) ;0,75>0

\(\Rightarrow\left(x-1,5\right)^2+0,75\ge0,75>0\) 

=>đpcm

hc tốt

5 tháng 7 2019

bạn làm cụ thể hơn đi

9 tháng 9 2018

sorry bn nhé! mik mới hok lớp 6 à

9 tháng 9 2018

\(3x^2-\frac{9}{3}x+3=3\left(x^2-x+\frac{1}{4}\right)+\frac{9}{4}=3\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)

18 tháng 12 2017

a) A=x4 +3x2+3

A=(x2)2+2.\(\dfrac{3}{2}\) x2+\(\left(\dfrac{3}{2}\right)^2\) +\(\dfrac{3}{4}\)

A=(x4+3x2+\(\dfrac{9}{4}\) )+\(\dfrac{3}{4}\)

A=\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)

do \(\left(x^2+\dfrac{3}{2}\right)^2\ge0\forall x\)

=>\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

=>A≥\(\dfrac{3}{4}\)

vậy A >1(đpcm)

16 tháng 6 2018

a) Đặt  \(A=4x-x^2-5\)

\(-A=x^2-4x+5\)

\(-A=\left(x^2-4x+4\right)+1\)

\(-A=\left(x-2\right)^2+1\)

Mà  \(\left(x-2\right)^2\ge0\forall x\)

\(\Rightarrow-A\ge1\)

\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)

b) Đặt  \(B=x^2-2x+5\)

\(B=\left(x^2-2x+1\right)+4\)

\(B=\left(x-1\right)^2+4\)

Mà  \(\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow B\ge4>0\left(đpcm\right)\)

16 tháng 6 2018

a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)

b) x-2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0  với mọi x (đpcm)

11 tháng 8 2019

\(A=16x^2+8x+3=\left(4x\right)^2+2.4x.1+1+2\)

\(=\left(4x+1\right)^2+2>0\forall x\)

21 tháng 6 2015

a) x^2 - 8x + 20

=x2-8x+16+4

=x2-2.x.4+42+4

=(x-4)2+4 >0 với mọi x (vì (x-4)2\(\ge\)0)

b) 4x^2 - 12x + 11

=(2x)2-2.2x.3+9+2

=(2x)2-2.2x.3+32+2

=(2x-3)3+2>0 với mọi x (vì (2x-3)2\(\ge\)0)

12 tháng 4 2018

      \(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Vì    \(\left(3x-1\right)^2\ge0\)

\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)

hay    \(9x^2-6x+1>0\)

12 tháng 4 2018

Ta có :

\(9x^2-6x+3\)

\(=\left(9x^2-6x+1\right)+2\)

\(=\left(3x-1\right)^2+2\)

Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)

\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)

Vậy \(9x^2-6x+3>0\forall x\in R\)