chứng tỏ với mọi x ta có:
x2-3x+3 >0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(3x^2-\frac{9}{3}x+3=3\left(x^2-x+\frac{1}{4}\right)+\frac{9}{4}=3\left(x-\frac{1}{2}\right)^2+\frac{9}{4}\ge\frac{9}{4}>0\)
a) A=x4 +3x2+3
A=(x2)2+2.\(\dfrac{3}{2}\) x2+\(\left(\dfrac{3}{2}\right)^2\) +\(\dfrac{3}{4}\)
A=(x4+3x2+\(\dfrac{9}{4}\) )+\(\dfrac{3}{4}\)
A=\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\)
do \(\left(x^2+\dfrac{3}{2}\right)^2\ge0\forall x\)
=>\(\left(x^2+\dfrac{3}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
=>A≥\(\dfrac{3}{4}\)
vậy A >1(đpcm)
a) Đặt \(A=4x-x^2-5\)
\(-A=x^2-4x+5\)
\(-A=\left(x^2-4x+4\right)+1\)
\(-A=\left(x-2\right)^2+1\)
Mà \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-A\ge1\)
\(\Leftrightarrow A\le-1< 0\left(đpcm\right)\)
b) Đặt \(B=x^2-2x+5\)
\(B=\left(x^2-2x+1\right)+4\)
\(B=\left(x-1\right)^2+4\)
Mà \(\left(x-1\right)^2\ge0\forall x\)
\(\Rightarrow B\ge4>0\left(đpcm\right)\)
a)4x-x2-5 = -(x2-4x+4)-1= -(x-2)^2 -1 < 0 với mọi x (đpcm)
b) x2 -2x+5= (x2-2x+1)+4=(x-1)^2 +4 >0 với mọi x (đpcm)
\(A=16x^2+8x+3=\left(4x\right)^2+2.4x.1+1+2\)
\(=\left(4x+1\right)^2+2>0\forall x\)
a) x^2 - 8x + 20
=x2-8x+16+4
=x2-2.x.4+42+4
=(x-4)2+4 >0 với mọi x (vì (x-4)2\(\ge\)0)
b) 4x^2 - 12x + 11
=(2x)2-2.2x.3+9+2
=(2x)2-2.2x.3+32+2
=(2x-3)3+2>0 với mọi x (vì (2x-3)2\(\ge\)0)
\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Vì \(\left(3x-1\right)^2\ge0\)
\(\Rightarrow\)\(\left(3x-1\right)^2+2>0\)
hay \(9x^2-6x+1>0\)
Ta có :
\(9x^2-6x+3\)
\(=\left(9x^2-6x+1\right)+2\)
\(=\left(3x-1\right)^2+2\)
Mà \(\left(3x-1\right)^2\ge0\forall x\in R\)
\(\Rightarrow\left(3x-1\right)^2+2\ge2>0\forall x\in R\)
Vậy \(9x^2-6x+3>0\forall x\in R\)
TL:
Ta có:
\(x^2-3x+3=x^2-3x+2,25+0,75\)
=\(\left(x-1,5\right)^2+0,75\)
mà:\(\left(x-1,5\right)^2\ge0\forall x\in R\) ;0,75>0
\(\Rightarrow\left(x-1,5\right)^2+0,75\ge0,75>0\)
=>đpcm
hc tốt
bạn làm cụ thể hơn đi