cho biểu thức P = x-2\(\sqrt{2x-3}\).Đặt t=\(\sqrt{2x-3}\).hãy biểu thị P theo t
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)
\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)
ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)
\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)
minP=-1/2
dấu = xảy ra khi x=7/2
a) \(t=\sqrt{2x-3}\ge0\)
<=> \(t^2=2x-3\)
<=> \(x=\frac{t^2+3}{2}\)
=> \(P=\frac{t^2+3}{2}-2t\)
b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> t = 2 khi đó: x = 7/2
a, ĐKXĐ : \(2x-3\ge0\)
=> \(x\ge\frac{3}{2}\)
Ta có : \(P=x-2\sqrt{2x-3}\)
- Đặt \(t=\sqrt{2x-3}\left(t\ge0\right)\)
=> \(t^2=2x-3\)
=> \(x=\frac{t^2+3}{2}\)
- Thay vào P ta được : \(P=\frac{t^2+3}{2}-2t\)
b, Ta có : \(P=\frac{t^2+3-4t}{2}\)
=> \(P=\frac{t^2-4t+4-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)
Ta thấy : \(\left(t-2\right)^2\ge0\forall x\)
=> \(\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\forall x\)
Vậy \(Min_P=-\frac{1}{2}\) <=> \(t-2=0\)
<=> \(t=2\left(TM\right)\)
<=> \(\sqrt{2x-3}=2\)
<=> \(2x-3=4\)
<=> \(2x=7\)
<=> \(x=\frac{7}{2}\left(TM\right)\)
ĐKXĐ:...
\(A=\frac{2\sqrt{x}\left(x+1\right)-3\left(x+1\right)}{2\sqrt{x}-3}=\frac{\left(2\sqrt{x}-3\right)\left(x+1\right)}{2\sqrt{x}-3}=x+1\)
\(B=\frac{2x\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\frac{2x}{\sqrt{x}}=2\sqrt{x}\)
\(A=x+1=\sqrt{4+\sqrt{7}}+1=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}+1=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}+1=\frac{1+\sqrt{14}+\sqrt{2}}{2}\)
\(B< -x+3\Leftrightarrow2\sqrt{x}< -x+3\Leftrightarrow x+2\sqrt{x}-3< 0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)< 0\Leftrightarrow\sqrt{x}-1< 0\Rightarrow x< 1\Rightarrow0< x< 1\)
Ta có:
\(A-B=x+1-2\sqrt{x}=\left(\sqrt{x}-1\right)^2\ge0\) \(\forall x\in TXĐ\)
Mà \(x\ne1\Rightarrow\) dấu "=" ko xảy ra
\(\Rightarrow A-B>0\Rightarrow A>B\)
a) \(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
\(Q=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{x\sqrt{x}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{x\left(\sqrt{x}+2\right)-\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)
b) \(P=Q\Leftrightarrow2\sqrt{x}+1=x-1\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\)
\(\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2=3\)
Vì \(\sqrt{x}-1\ge-1\) \(\Rightarrow\sqrt{x}-1=\sqrt{3}\)
\(\Rightarrow x=\left(\sqrt{3}+1\right)^2=4+2\sqrt{3}\)
Vậy...
Lời giải:
\(t=\sqrt{2x-3}\Rightarrow t^2=2x-3\Rightarrow x=\frac{t^2+3}{2}\)
Khi đó:
\(P=x-2\sqrt{2x-3}=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}\)