Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
\(t=\sqrt{2x-3}\Rightarrow t^2=2x-3\Rightarrow x=\frac{t^2+3}{2}\)
Khi đó:
\(P=x-2\sqrt{2x-3}=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}\)
ĐKXĐ:...
\(A=\frac{2\sqrt{x}\left(x+1\right)-3\left(x+1\right)}{2\sqrt{x}-3}=\frac{\left(2\sqrt{x}-3\right)\left(x+1\right)}{2\sqrt{x}-3}=x+1\)
\(B=\frac{2x\left(x-1\right)}{\sqrt{x}\left(x-1\right)}=\frac{2x}{\sqrt{x}}=2\sqrt{x}\)
\(A=x+1=\sqrt{4+\sqrt{7}}+1=\frac{\sqrt{8+2\sqrt{7}}}{\sqrt{2}}+1=\frac{\sqrt{\left(\sqrt{7}+1\right)^2}}{\sqrt{2}}+1=\frac{1+\sqrt{14}+\sqrt{2}}{2}\)
\(B< -x+3\Leftrightarrow2\sqrt{x}< -x+3\Leftrightarrow x+2\sqrt{x}-3< 0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)< 0\Leftrightarrow\sqrt{x}-1< 0\Rightarrow x< 1\Rightarrow0< x< 1\)
Ta có:
\(A-B=x+1-2\sqrt{x}=\left(\sqrt{x}-1\right)^2\ge0\) \(\forall x\in TXĐ\)
Mà \(x\ne1\Rightarrow\) dấu "=" ko xảy ra
\(\Rightarrow A-B>0\Rightarrow A>B\)
\(A=1+\sqrt{x-2}\)
Do \(\sqrt{x-2}\ge0\forall x>2\) nên \(A\ge1\forall x>2\)
Vậy \(minA=1\Leftrightarrow x=2\)
__________
\(B=5-\sqrt{2x-1}\)
Do \(\sqrt{2x-1}\ge0\forall x\ge\frac{1}{2}\)nên \(B\le5\forall x\ge\frac{1}{2}\)
Vậy \(maxB=5\Leftrightarrow x=\frac{1}{2}\)
BT1.
a,Ta có :\(A^2=-5x^2+10x+11\)
\(=-5\left(x^2-2x+1\right)+16\)
\(=-5\left(x-1\right)^2+16\)
Vì \(\left(x-1\right)^2\ge0\Rightarrow-5\left(x-1\right)^2\le0\)
\(\Rightarrow A^2\le16\Rightarrow A\le4\)
Dấu ''='' xảy ra \(\Leftrightarrow x=1\)
Vậy Max A = 4 \(\Leftrightarrow x=1\)
Câu b,c tương tự nhé.
a . ta có : \(1\le1+\sqrt{2-x}\Rightarrow GTNN=1\)
\(-2\le\sqrt{x-3}-2\Rightarrow GTNN=-2\)
b. \(0\le\sqrt{4-x^2}\le2\)
\(\sqrt{2x^2-x+3}=\sqrt{2\left(x^2-\frac{x}{2}+\frac{1}{16}\right)+\frac{23}{8}}=\sqrt{2\left(x-\frac{1}{4}\right)^2+\frac{23}{8}}\ge\frac{\sqrt{46}}{4}\)
vậy \(GTNN=\frac{\sqrt{46}}{4}\)
ta có : \(0\le-x^2+2x+5=-\left(x-1\right)^2+6\le6\)
\(\Rightarrow1-\sqrt{6}\le1-\sqrt{-x^2+2x+5}\le1\)Vậy \(\hept{\begin{cases}GTNN=1-\sqrt{6}\\GTLN=1\end{cases}}\)
\(t=\sqrt{2x-3}=>\frac{t^2+3}{2}=x\)
\(=>P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}=\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\)
ta có \(\frac{\left(t-2\right)^2}{2}\ge0\left(\forall t\right)\)
\(=>\frac{\left(t-2\right)^2}{2}-\frac{1}{2}\ge-\frac{1}{2}\left(\forall t\right)\)
minP=-1/2
dấu = xảy ra khi x=7/2
a) \(t=\sqrt{2x-3}\ge0\)
<=> \(t^2=2x-3\)
<=> \(x=\frac{t^2+3}{2}\)
=> \(P=\frac{t^2+3}{2}-2t\)
b) khi đó: \(P=\frac{t^2+3}{2}-2t=\frac{t^2-4t+3}{2}=\frac{\left(t-2\right)^2-1}{2}\ge-\frac{1}{2}\)
Dấu "=" xảy ra <=> t = 2 khi đó: x = 7/2