Cho tam giác ABC cân tại A.Vẽ trung tuyến AM
a)Vẽ đường trung trực của đoạn thẳng AC cắt AC tại E và cắt CB tại F. AM cắt EF tại I . Chứng minh rằng tam giác ACF cân và CI ⊥ AF
b)Trên tia đối của tia AF lấy điểm D sao cho AD=BF.Chứng minh rằng : △CFD cân
c)Tìm điều kiện của △ABC để CD⊥CF
∆ABC cân tại A, AM là đường trung tuyến ứng với cạnh đáy BC nên AM cũng là đường trung trực của BC.
D là giao điểm của các đường trung trực AC và BC nên D thuộc trung trực của AB.
Vậy DA = DB (tính chất đường trung trực).
a) Ta có: Đường trung trực của đoạn thẳng AC cắt cắt BC tại F
=> F thuộc đường trung trực của đoạn thẳng AC
=> FA=FC
=> Tam giác ACF cân tại F
Xét tam giác AFC có: FE và AM là hai đường cao cắt nhau tại I
=> I là trực tâm của tam giác AFC
=> CI vuông góc AF
b) Ta có: Tam giác FAC cân tại F
=> \(\widehat{A_1}=\widehat{C_1}\)
Tam giác ABC cân tại A
=> \(\widehat{B_1}=\widehat{C_1}\)
=> \(\widehat{A_1}=\widehat{B_1}\)(1)
Mà \(\widehat{A_1}+\widehat{A_2}=180^o\)( kề bù) (2)
và \(\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù) (3)
Từ (1), (2), (3) => \(\widehat{A_2}=\widehat{B_2}\)
Xét tam giác ABF và tam giác CAD
có: AB=AC ( tam giác ABC cân)
\(\widehat{A_2}=\widehat{B_2}\)( chứng minh trên)
BF=AD ( giả thiết)
=> Tam giác ABF = tam giác CAD
=> \(\widehat{D}=\widehat{F}\)
=> Tam giác CFD cân tại D
c) CD vuông CF
=> Tam giác CFD vuông cân
=> \(\widehat{AFC}=\widehat{DFC}=45^o\)
Xét tam giác AFC cân tại F
=> \(\widehat{C_1}+\widehat{A_1}+\widehat{AFC}=180^o\Rightarrow\widehat{C_1}=\widehat{A_1}=\frac{180^o-45}{2}=67,5^o\)
Xét tam giác ABC cân tại A
=> \(\widehat{C_1}=\widehat{B_1}=67,5^o\)
=> \(\widehat{A}=45^o\)
Điều kiện của tam giác ABC là cân tại A và góc A bằng 45 độ