Giúp mik tiếp nè
(2001×2002×2003.......×20010 )
Ai giải đc mik cảm ơn nhé ~
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét B=\(\frac{2000+2001}{2001+2002}\)\(=\)\(\frac{2000}{2001+2002}\)\(+\)\(\frac{2001}{2001+2002}\)
Mà \(\frac{2000}{2001}>\frac{2000}{2001+2002}\); \(\frac{2001}{2002}>\frac{2001}{2001+2002}\) \(\Rightarrow\)\(\frac{2000}{2001}+\frac{2001}{2002}\)\(>\frac{2000+2001}{2001+2002}\)
Vậy \(A>B\)
1 +( -2) + 3 + (-4) +...+2001 + (-2002) + 2003
= [1 +( -2)] + [3 + (-4)] +...+ [-2000+2001] + [(-2002) + 2003]
= -1 + -1 +............ + 1 + 1
= 0
A = 2003 × 2002 - 2/2001 × 2003 + 2001
A = 2003 × (2001 + 1) - 2/2001 × 2003 + 2001
A = 2003 × 2001 + (2003 - 2)/2001 × 2003 + 2001
A = 2003 × 2001 + 2001/2001 × 2003 + 2001
A = 1
ta có \(\frac{2000+2002}{2001+2003}\)= \(\frac{2000}{2001+2003}\)+ \(\frac{2002}{2001+2003}\)=\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
ta có \(\frac{2000}{2001}\)>\(\frac{2000}{4004}\) và \(\frac{2002}{2003}\)> \(\frac{2002}{4004}\)
nên \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000}{4004}\)+\(\frac{2002}{4004}\)
vậy \(\frac{2000}{2001}\)+\(\frac{2002}{2003}\)>\(\frac{2000+2002}{2001+2003}\)
\(\frac{2000+2002}{2001+2003}=\frac{2000}{2001+2003}+\frac{2002}{2001+2003}< \frac{2000}{2001}+\frac{2002}{2003}\)
Ta có \(\frac{2000}{2001}\approx1;\frac{2001}{2002}\approx1\Rightarrow A\approx2.\)\(\Rightarrow1< A< 2\)
\(2000+2001< 2001+2002\Rightarrow\frac{2000+2001}{2001+2002}< 1\)
Do đó A > B
A = 2000/2001 + 2001/2002 (1)
B = 2000+2001/ 2001+2002
=>\(B=\frac{2000}{2001+2002}+\frac{2001}{2001+2002}\)
Vì\(\frac{2000}{2001+2002}< \frac{2000}{2001}\) (so sánh số cùng tử)
\(\frac{2001}{2001+2002}< \frac{2001}{2002}\) (2)
Từ (1)và (2)=> A>B
=\(\frac{2001x2004x1001x2006}{2004x2006x2001x2002}\)=\(\frac{1}{2}\)
\(=\frac{2001.2004.1001.2002}{2004.2006.2001.2002}=\frac{1.1.1001.1}{1.2006.1.1}=\frac{1001}{2006}\)
2001 × 2002 × 2003 × ... × 20010
= 20010! : 2000!
#) Nghĩ vậy
~Study well~
#QASJ