K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2023

Tham khảo : 

Sứa , san hô , hải quỳ , thủy tức , sứa tu dài ,...

\(\dfrac{2001+2002}{2002+2003}< \dfrac{2001}{2002}+\dfrac{2002}{2003}\)

4 tháng 7 2016

1 +( -2) + 3 + (-4) +...+2001 + (-2002) + 2003

= [1 +( -2)] + [3 + (-4)] +...+ [-2000+2001] + [(-2002) + 2003]

= -1 + -1 +............ + 1 + 1

= 0

1 tháng 2 2018

thực sự bạn có thể bấm máy tính đó đồ ngốc, ahihi

3 tháng 2 2018

Do ngu người ta keu tinh nhanh ma

21 tháng 2 2020

1+(-2)+3+(-4)+...+2001+(-2002)+2003

=[1+(-2)]+[3+(-4)]+...+[2001+(-2002)]+2003  (có tất cả 1001 cặp)

=(-1)+(-1)+...+(-1)+2003

=(-1).1001+2003

=(-1001)+2003

=1002

Học tốt!

#Huyền#

21 tháng 2 2020

1 +( -2) + 3 + (-4) +...+2001 + (-2002) + 2003

= [1 +( -2)] + [3 + (-4)] +...+ [-2000+2001] + [(-2002) + 2003]

= -1 + -1 +............ + 1 + 1= 0

20 tháng 7 2016

=1/2000-1/2001+1/2001-1/2002+1/2002-1/2003+......+1/2009-1/2010

=1/2000-1/2010

=1/402000

20 tháng 7 2016

\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)

\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2001}-\frac{1}{2002}+\frac{1}{2003}-\frac{1}{2003}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(=\frac{1}{2000}-\frac{1}{2010}\)

\(=\frac{1}{402000}\)

20 tháng 7 2016

\(\frac{1}{2000}\)+2001+\(\frac{1}{2001}\)+ 2002+\(\frac{1}{2002}\)+2003+...+\(\frac{1}{2009}\)+2010

2001,0005+2002,0005+2003,0005+...+2010,0005

Số số hạng là:

(2010,0005-2001,0005)+1=10( số)

Số cặp số hạng là:

10:2= 5 ( cặp)

Tổng từng cặp là: 2001,0005+2010,0005=2002,0005+2009,0005=...=4011,001

Tổng của các số hạng trên là :

4011,001x5=20055,005

20 tháng 7 2016

\(\frac{1}{2000+2001}+\frac{1}{2001+2002}+\frac{1}{2002+2003}+...+\frac{1}{2009+2010}\)

\(=\frac{1}{2000}-\frac{1}{2001}+\frac{1}{2002}-...+\frac{1}{2009}-\frac{1}{2010}\)

\(=\frac{1}{2000}-\frac{1}{2010}\)

\(=\frac{1}{402000}\)

16 tháng 1 2019

a) \(1-2-3+4+5-6-7+...+2001-2002-2003+2004\)

  \(=\left(1-2-3+4\right)+\left(5-6-7+8\right)+...+\left(2001-2002-2003+2004\right)\)

  \(=0+0+...+0=0\)

b) \(1+2-3-4+5+6-7-8+...+2001+2002-2003-2004\)

   \(=\left(1+2-3-4\right)+\left(5+6-7-8\right)+...+\left(2001+2002-2003-2004\right)\)

   \(=\left(-4\right)+\left(-4\right)+...+\left(-4\right)\)

   \(=\left(-4\right)\cdot501=\left(-2004\right)\)