Tìm số tự nhiên n nhỏ nhất thỏa đồng thời 2 điều kiện sau:
a) n là bội của 3 và 4
b) các chữ số của số đó chỉ có thể là 4, 6 (mỗi số xuất hiện ít nhất một lần).
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi là số cần lập a1 + a2 + a3 = 10
Theo bài ra ta có: (1)
Mà và đôi một khác nhau nên
a1,a2,a3,a4,a5,a6 = 1 + 2 + 3 + 4 + 5 + 6 =21
(2)
Từ (1), (2) suy ra: a1 + a2 + a3 = 10
Phương trình này có các bộ nghiệm là: ( a1 , a2 , a3 ) = (1,3,6); (1,4,5); (2,3,5)
Với mỗi bộ ta có 3!.3!=36 số.
Vậy có cả 3.36=108 số cần lập.
Chọn C.
Chọn đáp án C
Cách 1: Gọi x = a 1 a 2 . . . a 6 ¯ , a i ∈ 1 , 2 , 3 , 4 , 5 , 6 là số cần lập
Theo bài ra ta có:
Mà a 1 , a 2 , a 3 , a 4 , a 5 , a 6 ∈ 1 , 2 , 3 , 4 , 5 , 6 và đôi một khác nhau nên
Từ (1), (2) suy ra: a 1 + a 2 + a 3 = 10
Phương trình này có các bộ nghiệm là:
Với mỗi bộ ta có 36 số.
Vậy có cả thảy 3.36=108 số cần lập.
Cách 2: Gọi x = a b c d e f là số cần lập
Ta có:
⇒ a + b + c = 11 .
Do a , b , c ∈ 1 , 2 , 3 , 4 , 5 , 6
Suy ra ta có các cặp sau:
Với mỗi bộ như vậy ta có 3! cách chọn a, b, c và 3! cách chọn d ,e ,f
Do đó: 3!.3!.3!= 108 số thỏa yêu cầu bài toán
1)100008
2)1026
3)(n+2)(n+2)(n+2)+2 chia hết cho n+2
-Vì 3(n+2) chia hết cho n+2 nên 2 cũng chia hết cho n+2
Vậy n+2 là ước của 2 ; U(2)={1;2}
=>n+2=2
=> n=0
4)(x+5) chia hết cho 5 => x chia hết cho 5
(x-12) chia hết cho 6=> x chia hết cho 6
(x+14) chia hết cho 7=> x chia hết cho 7
số nhỏ nhất khác 0 chia hết cho 5;6;7 là :210
5)Nếu số đó chia hết cho cả 3 và 4 thì số đó chia hết cho 12
=> số đó là bội của 12 trong khoảng 100 đến 200
số đó \(\in\){108;120;132;144;156;168;;180;192}
Có 8 số
6)645
7)Nếu cạnh của hình Lập Phương = 2 (cm) thì thể tích ban đầu của nó là :2.2.2=8(\(cm^3\))
Độ dài của cạnh hình lập phương mới là :40(cm) thể tích của nó là :40.40.40=64000(\(cm^3\))
Thể tich của nó gấp :64000:8=8000 lần thể tích ban đầu
8)102345
Ta có 1+2+3+4+5+6+ =21 Vậy tổng của 3 chữ số đầu là 10
Dễ thấy 1+3+6 = 1+4+5 = 2+3+5
Vậy có 3 cách chọn 3 nhóm 3 chữ số đầu (1,3,6 hoặc 1,4,5 hoặc 2,3,5)
Với 1 cách chọn nhóm 3 chữ số thì có 3! cách để lập ra số \(\overline{a_1a_2a_3}\)
Với 3 số còn lại thì có 3! cách để lập ra số \(\overline{a_4a_5a_6}\)
(ở đây \(\overline{a_1a_2a_3a_4a_5a_6}\) là số thỏa mãn yêu cầu đề ra)
Theo quy tắc nhân ta có 3.6.6 = 108
Vậy có 108 số cần tìm
Em thấy như này còn thiều trường hợp hay sao ý ạ tại ba số nhỏ hơn đâu nhất thiết phải bằng 10 ạ 123 vs 345 vẫn tỏa mãn đấy chứ ạ.Có thể cho em là mình sai ở đâu hay kế quả thế nào được không ạ??
#)Giải :
Vì bội chung của 3 và 4 chia hết cho 3 và 4 => số đó chia hết cho 12
=> Ta tìm được : \(B\left(12\right)=\left\{12;24;36;48;60;72;84;96;108;...\right\}\)
Rùi tự xét típ nha ^^
Ta có:
\(n\in BC\left(3,4\right)\Rightarrow n⋮3,4\)
Vì \(n⋮4\) nên 2 chữ số tận cùng của n phải chia hết cho 4 (dấu hiệu chia hết cho 4) mà các chữ số của n chỉ có thể là 4 hoặc 6\(\Rightarrow\)2 chữ số tận cùng của n là 44 hoặc 64
TH1: 2 chữ số tận cùng của là 44
Vì \(n⋮3\Rightarrow\) tổng các chữ số của n phải chia hết cho 3
Vì các chữ số của n chỉ có thể là 4 hoặc 6\(\Rightarrow\)các số đó là 4644 và 6444 (do có cả số 4 và 6 và \(4+6+4+4,6+4+4+4⋮3\))
Mà đề yêu cầu là tìm số nhỏ nhất\(\Rightarrow\)số đó là 4644
TH2: 2 chữ số tận cùng của là 64
Vì \(n⋮3\Rightarrow\) tổng các chữ số của n phải chia hết cho 3
Vì các chữ số của n chỉ có thể là 4 hoặc 6\(\Rightarrow\)số đó là 4464 (do có cả số 4 và 6 và \(4+4+6+4⋮3\))
Mà \(4464\left(TH2\right)< 4644\left(TH1\right)\Rightarrow\)số đó là 4464 (do đề yêu cầu tìm số nhỏ nhất)