Tìm tất cả các số tự nhiên biết rằng n5 + n + 1 chỉ có 1 ước số nguyên tố duy nhất
Help me ! ai nhanh mi cho 10 tick
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số phải tìm là \(\overline{abcd}=n^2\)
nên số viết theo thứ tự ngược lại là \(\overline{dcba}=m^2\) với \(m,n\inℕ\)và m>n
Do \(1000\le\overline{abcd},\overline{dcba}\le9999\) nên \(1000\le m^2,n^2\le9999\)
Mà \(m^2,n^2\)là số chính phương và \(m,n\inℕ\)
\(\Rightarrow1024\le m^2,n^2\le9801\)
\(\Rightarrow32\le m,n\le99\)
Do \(\overline{dcba}⋮\overline{abcd}\Rightarrow m^2⋮n^2\Rightarrow m⋮n\)
Đặt \(m=kn\forall k\inℕ^∗,k\ge2\Rightarrow\overline{dcba}=k^2.\overline{abcd}\)
Ta có: \(m=kn\le99,n\ge32\)
=> 32.k.n ≤ 99n => k ≤ 99/32 => k≤ 3 \(\Rightarrow32kn\le99n\Rightarrow k\le\frac{99}{32}\Rightarrow k\le3\)
Như vậy: \(k\in\left\{2;3\right\}\)
+Nếu k = 2 thì: dcba = 4.abcd
Theo a € {1,4,6,9}: nếu a=4 thì: dcb4 = 4bcd . 4 > 9999 => a chỉ có thể là 1.
Khi đó: dcb1 = 4. 1bcd ≤ 4.1999 = 7996 => d ≤ 7. Kết hợp với đc: d= 4 hoặc d =6
Với d=4: <=> 390b+15=60c <=> 26b+1=4c (vô lý vì vế trái chẵn còn vế phải lẻ)
Với d = 6: <=> 390b+23 = 60c+2000 (cũng vô lý)
+Như vậy: k =3. Khi đó: dcba = 9.abcd
a chỉ có thể là 1 và d = 9. Khi đó: <=> 9cb1 = 9.1bc9
<=> 10c = 800b+80 <=> c = 80b+8
Điều này chỉ có thể xảy ra <=> b=0 và c=8
KL: số phải tìm là: 1089
B2 : n=1
vì nếu lớn hơn 1 thì có 5soos chia hết cho 2 và ít nhất 1 số chia hết cho3 là số lẻ
nếu n=0 thì có 4soos nguyên tố
nhắn đúng cho mình nhé
Ta có các số nguyên tố:
2; 3; 5; 7; 11; 13; 17; 19; 23; ...
Các số nguyên tố càng lớn thì khoảng cách giữa chúng càng lớn
Nên n phải là các số nhỏ để được 10 số liên tiếp là số nguyên tố nhiều nhất
⇒ n có 3 khả năng ⇒ n ϵ {1; 2; 3}
TH1: n = 1 ⇒ Có 5 số nguyên tố (2;3;5;7;11)
TH2: n = 2 ⇒ Có 4 số nguyên tố (3;5;7;11)
TH3: n = 3 ⇒ Có 4 số nguyên tố (5;7;11;13)
Vậy khi n = 1 thì dãy số: n +1; n + 2; n + 3; ...; n + 10 có nhiều số nguyên tố nhất
1/ Xét n=0: Dãy có 4 SNT: 2,3,5,7
Xét n=1: Dãy có 5 SNT: 2,3,5,7,11
Xét n=2: Dãy có 4 SNT: 3,5,7,11
Xét n>2: Dãy có 5 số chẵn lớn hơn 2 và ít nhất 1 số lẻ chia hết cho 3 và lớn hơn 3 --> chỉ còn nhiều nhất 4 SNT
Vậy n=1 thỏa đề.
2/ Xét n>5:
Dãy có 15 số chẵn lớn hơn 2 --> hợp số
15 số còn lại là 15 số lẻ liên tiếp nên có ít nhất 5 số chia hết cho 3 và lớn hơn 3 --> hợp số
10 số lẻ còn lại có ít nhất 2 số chia hết cho 5 và tất nhiên lớn hơn 5 ---> hợp số
Vậy còn nhiều nhất 8 SNT trong dãy trên.
2:
x+xy+y=4
=>x(y+1)+y+1=5
=>(x+1)(y+1)=5
=>\(\left(x+1;y+1\right)\in\left\{\left(1;5\right);\left(5;1\right);\left(-1;-5\right);\left(-5;-1\right)\right\}\)
=>\(\left(x,y\right)\in\left\{\left(0;4\right);\left(4;0\right);\left(-2;-6\right);\left(-6;-2\right)\right\}\)
Tìm tất cả các số tự nhiên biết rằng n^5 + n + 1 chỉ có 1 ước số nguyên tố duy nhất
Vậy số này phải là 1 số Nguyên tố
Cho n = 3
3^5 = 243
243 + 3 + 1 = 247
Và 247 chia hết cho 13(là 1 Số Nguyên Tố)
sai rồi, xin lỗi