Giải phương trình :
3\(\sqrt[3]{x-3}+4\sqrt[3]{8x-24}-\frac{1}{3}\sqrt[3]{27x-81}=-20\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)
\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)
\(\Leftrightarrow19\sqrt{2x}=38\)
\(\Leftrightarrow\sqrt{2x}=2\)
\(\Leftrightarrow2x=4\)
hay x=2(thỏa ĐK)
b) ĐKXĐ: \(x\ge0\)
Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)
\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)
\(\Leftrightarrow\sqrt{3x}=2\)
\(\Leftrightarrow3x=4\)
hay \(x=\dfrac{4}{3}\)
c) ĐKXĐ: \(x\ge5\)
Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)
\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)
\(\Leftrightarrow2\sqrt{x-5}=4\)
\(\Leftrightarrow\sqrt{x-5}=2\)
\(\Leftrightarrow x-5=4\)
hay x=9
a)
\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)
b)
\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)
c)
\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
a, ĐK :a >= 3
\(25\sqrt{\frac{a-3}{25}}-7\sqrt{\frac{4a-12}{9}}-7\sqrt{a^2-9}+18\sqrt{\frac{9a^2-81}{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{\left(a-3\right)\left(a+3\right)}+6\sqrt{\left(a-3\right)\left(a+3\right)}=0\)
\(\Leftrightarrow\sqrt{a-3}\left(5-\frac{14}{3}-\sqrt{a+3}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\sqrt{a-3}=0\\\sqrt{a+3}=\frac{1}{3}\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{2}{9}\left(loai\right)\end{cases}}\)
b, \(ĐK:x\ge-\frac{1}{2}\)
\(\Leftrightarrow3\sqrt{2x+1}-2\sqrt{2x+1}+\frac{1}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\frac{4}{3}\sqrt{2x+1}=4\)
\(\Leftrightarrow\sqrt{2x+1}=3\)
\(\Leftrightarrow x=4\left(tm\right)\)
a) đk: \(a\ge3\)
pt \(\Leftrightarrow25\frac{\sqrt{a-3}}{\sqrt{25}}-7\frac{\sqrt{4\left(a-3\right)}}{\sqrt{9}}-7\sqrt{a^2-9}+18\frac{\sqrt{9\left(a^2-9\right)}}{\sqrt{81}}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{7.2}{3}\sqrt{a-3}-7\sqrt{a^2-9}+\frac{18.3}{9}\sqrt{a^2-9}=0\)
\(\Leftrightarrow5\sqrt{a-3}-\frac{14}{3}\sqrt{a-3}-7\sqrt{a^2-9}+6\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}-\sqrt{a^2-9}=0\)
\(\Leftrightarrow\frac{1}{3}\sqrt{a-3}=\sqrt{a^2-9}\)
\(\Leftrightarrow\frac{1}{9}\left(a-3\right)=a^2-9\)
\(\Leftrightarrow a^2-\frac{1}{9}a-\frac{26}{3}=0\Leftrightarrow\orbr{\begin{cases}a=3\left(tm\right)\\a=-\frac{26}{9}\left(loại\right)\end{cases}}\)
a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)
b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)
\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)
\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)
Vậy \(S=\varnothing\)
b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)
a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\))
\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)
\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)
\(\Leftrightarrow-2\sqrt{x-1}=-2\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)
\(\Leftrightarrow\sqrt{x-1}=1\)
\(\Leftrightarrow x-1=1\)
\(\Leftrightarrow x=2\left(tm\right)\)
b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))
\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)
\(\Leftrightarrow4\sqrt{x+1}=16\)
\(\Leftrightarrow\sqrt{x+1}=4\)
\(\Leftrightarrow x+1=16\)
\(\Leftrightarrow x=15\left(tm\right)\)
\(c,\frac{x^2+\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}+\frac{x^2-\sqrt{3}}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow\frac{x^2}{x+\sqrt{x^2+\sqrt{3}}}=x\)
\(\Rightarrow2x^2=x^2+x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^2=x\sqrt{x^2+\sqrt{3}}\)
\(\Rightarrow x^4=x^3+x\sqrt{3}\)
\(\Rightarrow x\left(x^2-x+\sqrt{3}\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^2-x+\sqrt{3}=0\end{cases}}\)
a: Ta có: \(\sqrt{4x+20}-3\sqrt{x+5}+\dfrac{4}{3}\sqrt{9x+45}=6\)
\(\Leftrightarrow2\sqrt{x+5}-3\sqrt{x+5}+4\sqrt{x+5}=6\)
\(\Leftrightarrow3\sqrt{x+5}=6\)
\(\Leftrightarrow x+5=4\)
hay x=-1
b: Ta có: \(\dfrac{1}{2}\sqrt{x-1}-\dfrac{3}{2}\sqrt{9x-9}+24\sqrt{\dfrac{x-1}{64}}=-17\)
\(\Leftrightarrow\dfrac{1}{2}\sqrt{x-1}-\dfrac{9}{2}\sqrt{x-1}+3\sqrt{x-1}=-17\)
\(\Leftrightarrow\sqrt{x-1}=17\)
\(\Leftrightarrow x-1=289\)
hay x=290
a) x^{3}=2 \Leftrightarrow x=\sqrt[3]{2}x3=2⇔x=32.
b) 27 x^{3}=-81 \Leftrightarrow x^{3}=-3 \Leftrightarrow \sqrt[3]{x^{3}}=\sqrt[3]{-3} \Leftrightarrow x=-\sqrt[3]{3}27x3=−81⇔x3=−3⇔3x3=3−3⇔x=−33.
c) \dfrac{1}{2} x^{3}=0,004 \Leftrightarrow x^{3}=0,008 \Leftrightarrow \sqrt[3]{x^{3}}=\sqrt[3]{0,008} \Leftrightarrow x=0,2 .21x3=0,004⇔x3=0,008⇔3x3=30,008⇔x=0,2.
d) \sqrt[3]{3 x+1}=4 \Leftrightarrow 3 x+1=4^{3} \Leftrightarrow x=21.33x+1=4⇔3x+1=43⇔x=21.
e) \sqrt[3]{3-2 x}=-3 \Leftrightarrow 3-2 x=(-3)^{3} \Leftrightarrow x=15.33−2x=−3⇔3−2x=(−3)3⇔x=15.
f) \sqrt[3]{x-2}+2=x \Leftrightarrow \sqrt[3]{x-2}=x-2 \Leftrightarrow x-2=(x-2)^{3}.3x−2+2=x⇔3x−2=x−2⇔x−2=(x−2)3.
\Leftrightarrow(x-2)\left[(x-2)^{2}-1\right]=0 \Leftrightarrow\left[\begin{array}{l}x-2=1 \\ (x-2)^{2}=1\end{array}\Leftrightarrow\left[\begin{array}{l}x=2 \\ x-2=1 \\ x-2=-1\end{array}\Leftrightarrow\left[\begin{array}{l}x=2 \\ x=3 \\x=1\end{array}\right.\right.\right..⇔(x−2)[(x−2)2−1]=0⇔⎣⎢⎡x−2=1(x−2)2=1⇔⎣⎢⎡x=2x−2=1x−2=−1⇔⎣⎢⎡x=2x=3x=1.
a) x=\(\sqrt[3]{2}\) b x=\(\sqrt[3]{-3}\) c) x=0,2 d)x=21 e) x=15 f) x=3
\(3\sqrt[3]{x-3}+4\sqrt[3]{8x-24}-\frac{1}{3}\sqrt[3]{27x-81}=3\sqrt[3]{x-3}+4\sqrt[3]{8\left(x-3\right)}-\frac{1}{3}\sqrt[3]{27\left(x-3\right)}=3\sqrt[3]{x-3}+4.2.\sqrt[3]{x-3}-\frac{1}{3}.3.\sqrt[3]{x-3}=3\sqrt[3]{x-3}+8\sqrt[3]{x-3}-\sqrt[3]{x-3}=10.\sqrt[3]{x-3}=-20\Leftrightarrow\sqrt[3]{x-3}=-2\Leftrightarrow x-3=-8\Leftrightarrow x=-5\)