\(3x^2+8x+7=5\sqrt{x^3+x^2+x-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Để giải các phương trình này, chúng ta sẽ làm từng bước như sau: 1. 13x(7-x) = 26: Mở ngoặc và rút gọn: 91x - 13x^2 = 26 Chuyển về dạng bậc hai: 13x^2 - 91x + 26 = 0 Giải phương trình bậc hai này để tìm giá trị của x. 2. (4x-18)/3 = 2: Nhân cả hai vế của phương trình với 3 để loại bỏ mẫu số: 4x - 18 = 6 Cộng thêm 18 vào cả hai vế: 4x = 24 Chia cả hai vế cho 4: x = 6 3. 2xx + 98x2022 = 98x2023: Rút gọn các thành phần: 2x^2 + 98x^2022 = 98x^2023 Chia cả hai vế cho 2x^2022: x + 49 = 49x Chuyển các thành phần chứa x về cùng một vế: 49x - x = 49 Rút gọn: 48x = 49 Chia cả hai vế cho 48: x = 49/48 4. (x+1) + (x+3) + (x+5) + ... + (x+101): Đây là một dãy số hình học có công sai d = 2 (do mỗi số tiếp theo cách nhau 2 đơn vị). Số phần tử trong dãy là n = 101/2 + 1 = 51. Áp dụng công thức tổng của dãy số hình học: S = (n/2)(a + l), trong đó a là số đầu tiên, l là số cuối cùng. S = (51/2)(x + (x + 2(51-1))) = (51/2)(x + (x + 100)) = (51/2)(2x + 100) = 51(x + 50) Vậy, kết quả của các phương trình là: 1. x = giá trị tìm được từ phương trình bậc hai. 2. x = 6 3. x = 49/48 4. S = 51(x + 50)
![](https://rs.olm.vn/images/avt/0.png?1311)
a.
ĐKXĐ: \(x\ge-5\)
\(\Leftrightarrow\left(x^2-5x+6\right)\left(\sqrt{x+5}+4\right)=\left(3x+5\right)\left(x^2-5x+6\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x+6=0\\\sqrt{x+5}+4=3x+5\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=3\\\sqrt{x+5}=3x+1\left(1\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\x+5=9x^2+6x+1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\ge-\dfrac{1}{3}\\9x^2+5x-4=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=-1\left(loại\right)\\x=\dfrac{4}{9}\end{matrix}\right.\)
b. Bạn coi lại đề, pt này nghiệm rất xấu
c.
ĐKXĐ: \(1\le x\le7\)
\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\\x=5\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Lời giải:
a. ĐKXĐ: $x\geq 0$
$2\sqrt{2x}-5\sqrt{8x}+7\sqrt{18x}=28$
$\Leftrightarrow 2\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}=28$
$\Leftrightarrow 13\sqrt{2x}=28$
$\Leftrightarrow \sqrt{2x}=\frac{28}{13}$
$\Leftrightarrow 2x=\frac{784}{169}$
$\Leftrightarrow x=\frac{392}{169}$
b. ĐKXĐ: $x\geq 5$
PT $\Leftrightarrow \sqrt{4}.\sqrt{x-5}+\sqrt{x-5}-\frac{1}{3}.\sqrt{9}.\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4$
$\Leftrightarrow 2\sqrt{x-5}=4$
$\Leftrightarrow \sqrt{x-5}=2$
$\Leftrightarrow x-5=4$
$\Leftrightarrow x=9$ (tm)
c. ĐKXĐ: $x\geq \frac{2}{3}$ hoặc $x< -1$
PT $\Leftrightarrow \frac{3x-2}{x+1}=9$
$\Rightarrow 3x-2=9(x+1)$
$\Leftrightarrow x=\frac{-11}{6}$ (tm)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,=27-5\sqrt{3x}\\ b,=3\sqrt{2x}-10\sqrt{2x}+21\sqrt{2x}+28=14\sqrt{2x}+28\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Em xin phép làm bài EZ nhất :)
4,ĐK :\(\forall x\in R\)
Đặt \(x^2+x+2=t\) (\(t\ge\dfrac{7}{4}\))
\(PT\Leftrightarrow\sqrt{t+5}+\sqrt{t}=\sqrt{3t+13}\)
\(\Leftrightarrow2t+5+2\sqrt{t\left(t+5\right)}=3t+13\)
\(\Leftrightarrow t+8=2\sqrt{t^2+5t}\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge-8\\\left(t+8\right)^2=4t^2+20t\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\3t^2+4t-64=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left(t-4\right)\left(3t+16\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}t\ge\dfrac{7}{4}\\\left[{}\begin{matrix}t=4\left(tm\right)\\t=-\dfrac{16}{3}\left(l\right)\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x^2+x+2=4\)\(\Leftrightarrow x^2+x-2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\end{matrix}\right.\)
Vậy ....
![](https://rs.olm.vn/images/avt/0.png?1311)
Hung nguyen, Trần Thanh Phương, Sky SơnTùng, @tth_new, @Nguyễn Việt Lâm, @Akai Haruma, @No choice teen
help me, pleaseee
Cần gấp lắm ạ!
![](https://rs.olm.vn/images/avt/0.png?1311)
ĐKXĐ: \(x\ge\sqrt[3]{7}\)
\(4x^3-x^2+2x-32+\left(x^3-4\right)\left(\sqrt{x^3-7}-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16\right)+\dfrac{\left(x^3-4\right)\left(x-2\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}=0\)
\(\Leftrightarrow\left(x-2\right)\left(4x^2+7x+16+\dfrac{\left(x^3-4\right)\left(x^2+2x+4\right)}{\sqrt{x^3-7}+1}\right)=0\)
\(\Leftrightarrow x=2\) (ngoặc đằng sau luôn dương do \(x^3-4=x^3-7+3>0\))
2.
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=x^3+3x^2+3x+1+x+1\)
\(\Leftrightarrow\left(2x^3\right)^3+2x^3=\left(x+1\right)^3+x+1\)
Đặt \(\left\{{}\begin{matrix}2x^3=a\\x+1=b\end{matrix}\right.\)
\(\Rightarrow a^3-b^3+a-b=0\Leftrightarrow\left(a-b\right)\left(a^2+ab+b^2+1\right)=0\)
\(\Leftrightarrow a=b\)
\(\Rightarrow2x^3=x+1\Leftrightarrow\left(x-1\right)\left(2x^2+2x+1\right)=0\)
ĐKXĐ \(x\ge1\)
\(3x^2+8x+7=5\sqrt{\left(x-1\right)\left(x^2+2x+3\right)}\)
Đặt \(\sqrt{x-1}=a;\sqrt{x^2+2x+3}=b\left(a,b\ge0\right)\)
=> \(3b^2+2a^2=3x^2+8x+7\)
Khi đó PT
<=> \(3b^2+2a^2=5ab\)
<=> \(\left(a-b\right)\left(2a-3b\right)=0\)
<=> \(\orbr{\begin{cases}a=b\\2a=3b\end{cases}}\)
+ a=b
<=> \(\sqrt{x-1}=\sqrt{x^2+2x+3}\)
<=> \(x^2+x+4=0\)vô nghiệm
+ 2a=3b
\(2\sqrt{x-1}=3\sqrt{x^2+2x+3}\)
<=> \(9x^2+14x+31=0\)vô nghiệm
Vậy PT vô nghiệm
Cách khác \(3x^2+8x+7=5\sqrt{\left(x-1\right)\left(x^2+2x+3\right)}\le\frac{5}{2}\left(x^2+3x+2\right)\)bất đẳng thức cosi
=> \(x^2+x+4\le0\)vô lý vì \(x^2+x+4=\left(x+\frac{1}{2}\right)^2+\frac{15}{4}>0\)
=> pt vô nghiệm
Vậy PT vô nghiệm