chứng minh rằng :
3x2 - 4x + 50 > 0 với mọi x thuộc R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=x^2-2x+2=\left(x-1\right)^2+1>0\forall x\inℝ\)
b) \(x-x^2-3=-\left(x^2-x+3\right)\)
\(=-\left(x^2-x+\frac{1}{4}+\frac{11}{4}\right)\)
\(=-\left[\left(x-\frac{1}{2}\right)^2+\frac{11}{4}\right]\)
\(=-\left[\left(x-\frac{1}{2}\right)^2\right]-\frac{11}{4}\le\frac{-11}{4}< 0\forall x\inℝ\)
x^2-x+1>0
<=>x2-2x.1/2+1/4+3/4>0
<=>(x-1/2)2+3/4 >0 ( luôn đúng với mọi x vì (x-1/2)2\(\ge\)0 với mọi x)
vậy x^2-x+1>0 với mọi x thuộc R
Mọi người giúp với
Tìm x
x^2+5x=0
Chứng minh x^2-2x+3>0 với mọi số thực x
Đường trung bình của một tam là đoạn thẳng nối 2 trung điểm hai cạnh của tam giác.Cho tam giác ABC có I là trung điểm của cạnh AB.Qua I kẻ đường thẳng a // với cạnh BC cắt AC tại K
a) Chứng minh IK là đường trung bình của tam giác ABC
b) Tính độ dài IK với BC=12cm
c) Qua K kẻ đường thẳng b // với AB cắt BC tại L . Chứng minh rằng tứ giác BLKL là hình bình hành
\(\left(x-3\right)\left(4x+5\right)+19=4x^2-12x+5x-15+19=4x^2-7x+4\)
\(=\left(2x\right)^2-2.\frac{7}{4}.2x+\frac{49}{16}+\frac{15}{16}=\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\)
Vì \(\left(2x-\frac{7}{4}\right)^2\ge0\Rightarrow\left(2x-\frac{7}{4}\right)^2+\frac{15}{16}\ge\frac{15}{16}>0\Leftrightarrow\left(x-3\right)\left(4x+5\right)+19>0\)(đpcm)
A=\(x^2+6x+9+1\)
=\(\left(x-3\right)^2+1\)
Vì \(\left(x-3\right)^2\)\(\ge\)0 \(\forall\)x
=>\(\left(x-3\right)^2\)+1\(\ge\)1 \(\forall\) x
Vậy A luôn luôn dương với mọi x
B=4\(x^2-4x+1+2\)
=\(\left(2x-1\right)^2+2\)
Vì\(\left(2x-1\right)^2\ge0\forall\) x
=>\(\left(2x-1\right)^2+2\ge2\forall\) x\(\in R\)
Vậy B luôn luôn dương với x thuộc R
A=x2-6x+10
A=x2-2*3x+32+1
A=(x-3)2+1
Ta có: (x-3)2> và = 0 với mọi x
Dấu "=" xảy ra=>(x-3)^2=0<=>x-3=0<=>x=3
=>A> và = 1 > 0 với mọi x
Vậy A luôn dương với mọi x
B=4x^2+4x+1+2
B=(2x+1)^2+2
Ta có: (2x+1)^2 > và = 0 với mọi x
Dấu "=" xảy ra<=> (2x+1)^2=0<=>2x+1=0<=>x=-1/2
=>B> và = 2 >0 với mọi x
Vậy B luôn dương với mọi x
a) Đa thức A=x(x-6)+10
Ta có: \(A=x\left(x-6\right)+10\)
\(=x^2-6x+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
Ta có: \(\left(x-3\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\forall x\)
hay \(A=x\left(x-6\right)+10>0\forall x\)(đpcm)
b) Đa thức \(B=4x^2-4x+3\)
Ta có: \(B=4x^2-4x+3\)
\(=\left(2x\right)^2-2\cdot2x\cdot1+1+2\)
\(=\left(2x-1\right)^2+2\)
Ta có: \(\left(2x-1\right)^2\ge0\forall x\)
hay \(\left(2x-1\right)^2+2\ge2>0\forall x\)
Vậy: \(B=4x^2-4x+3\)>0\(\forall x\in R\)(đpcm)
Ta có : x2 + 2x + 2
= x2 + 2x + 1 + 1
= (x + 1)2 + 1 \(\ge1\forall x\)
Vậy x2 + 2x + 2 \(>0\forall x\)
Ta có : x2 + 2x + 2
=> x2 + 2x + 1 + 1
=> ( x + 1)2 + 1 > 1\(\forall x\)
Vậy x2 + 2x + 2 > \(0\forall x\)
Ta có: \(-x^2-4x-5\)
\(=-\left(x^2+4x+5\right)\)
\(=-\left(x^2+4x+4\right)-1\)
\(=-\left(x+2\right)^2-1< 0\forall x\)
Câu a :
\(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2\ge\dfrac{3}{4}\)
Vậy biểu thức trên luôn lớn hơn 0 với mọi x
Làm Full cho you nhé,bạn kia sai r:
\(linh_1=x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\left(đpcm\right)\)
\(linh_2=-4x^2-4x-2=-1\left(4x^2+4x+2\right)=-1\left(4x^2+4x+1+1\right)=-1\left(4x^2+4x+1\right)-1=-1\left(2x+1\right)^2-1< 0\left(đpcm\right)\)
\(3x^2-4x+50\)
\(=3\left(x^2-\frac{4}{3}x+\frac{4}{9}\right)+\frac{146}{3}\)
\(=3\left(x-\frac{2}{3}\right)^2+\frac{146}{3}\ge\frac{146}{3}>0\) (đpcm)
bạn làm rõ hơn tí đi được không