K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2019

\(\Leftrightarrow\left(x^2+1\right)\left[x^2-2x\left(k-1\right)+\left(k-1\right)^2+k^2-4k+5\right]=2x\)

\(\Leftrightarrow\left(x^2+1\right)\left[\left(x-k+1\right)^2+\left(k-2\right)^2+1\right]=2x\)

Do \(VT>0\) \(\forall x\Rightarrow VP>0\Rightarrow x>0\)

Mặt khác \(\left\{{}\begin{matrix}x^2+1\ge2x\\\left(x-k+1\right)^2+\left(k-2\right)^2+1\ge1\end{matrix}\right.\)

\(\Rightarrow\left(x^2+1\right)\left[\left(x-k+1\right)^2+\left(k-2\right)^2+1\right]\ge2x\)

Dấu "=" xảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}x^2+1=2x\\\left(x-k+1\right)^2+\left(k-2\right)^2+1=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\k=2\end{matrix}\right.\)

Vậy \(k=2\) thì pt có nghiệm \(x=1\)

4 tháng 3 2020

a) Ta có : 

\(3x=3\left(x+2\right)\)

\(\Leftrightarrow3x=3x+2\)

\(\Leftrightarrow0=2\) ( vô lí )

Do đó pt đã cho vô nghiệm

b) Ta có  \(\left|x\right|=-x^2-2\) (1)

Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)

VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)

Do đó : \(VT\ne VP\)

Vì vậy pt đã cho vô nghiệm

29 tháng 3 2020
https://i.imgur.com/0Ega507.jpg
29 tháng 3 2020

ko lm nốt ý b bài 2 à

18 tháng 4 2017

Giải:

Để phương trình có 2 nghiệm phân biệt \(x_1,x_2\) thì \(\Delta>0\)

\(\Leftrightarrow\left(2m-1\right)^2-4.2\left(m-1\right)>0\)

Từ đó suy ra \(m\ne1,5\left(1\right)\)

Mặt khác, theo định lý Viet và giả thiết ta có:

\(\hept{\begin{cases}x_1+x_2=-\frac{2m-1}{2}\\x_1.x_2=\frac{m-1}{2}\\3x_1-4x_2=11\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x_1=\frac{13-4m}{7}\\x_1=\frac{7m-7}{26-8m}\\3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\end{cases}}\)

Giải phương trình \(3\frac{13-4m}{7}-4\frac{7m-7}{26-8m}=11\) 

Ta được \(m=-2\) và \(m=4,125\left(2\right)\)

Đối chiếu điều kiện  \(\left(1\right)\)  và \(\left(2\right)\) ta có: Với \(m=-2\) hoặc \(m=4,125\) thì phương trình đã có 2 nghiệm phân biệt