tim a b c biet
10a=15b=6c va 10a-5b+c=25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
a) Ta có:
\(\left\{{}\begin{matrix}2a=7b\\5b=4c\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{7}=\dfrac{b}{2}\\\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{14}=\dfrac{b}{4}\\\dfrac{b}{4}=\dfrac{c}{5}\end{matrix}\right.\Leftrightarrow\dfrac{a}{14}=\dfrac{b}{4}=\dfrac{c}{5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{14}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{3a}{42}=\dfrac{7b}{28}=\dfrac{5c}{25}=\dfrac{3a+5c-7b}{42+25-28}=\dfrac{30}{39}=\dfrac{10}{13}\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{a}{14}=\dfrac{10}{13}\\\dfrac{b}{4}=\dfrac{10}{13}\\\dfrac{c}{5}=\dfrac{10}{13}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{140}{13}\\b=\dfrac{40}{13}\\c=\dfrac{50}{13}\end{matrix}\right.\)
Vậy ...
b) Tương tự câu a.
Chúc bạn học tốt!
a,Ta có:
2a=7b\(\Rightarrow\)\(\dfrac{a}{7}\)=\(\dfrac{b}{2}\)\(\Rightarrow\)\(\dfrac{a}{14}\)=\(\dfrac{b}{4}\)(1)
5b=4c\(\Rightarrow\)\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\)\(\Rightarrow\)\(\dfrac{b}{4}\)=\(\dfrac{c}{5}\)(2)
Từ (1) và (2)\(\Rightarrow\)\(\dfrac{a}{14}\)=\(\dfrac{c}{5}\)=\(\dfrac{b}{4}\)\(\Rightarrow\)\(\dfrac{3a}{42}\)=\(\dfrac{5c}{25}\)=\(\dfrac{7b}{28}\)
Áp dụng t/c dãy tỉ số bằng nhau,ta có:
\(\dfrac{3a}{42}\)=\(\dfrac{5c}{25}\)=\(\dfrac{7b}{28}\)=\(\dfrac{3a+5c-7b}{42+25-28}\)=\(\dfrac{30}{39}\)=\(\dfrac{10}{13}\)
\(\Rightarrow\)a=\(\dfrac{10}{13}\).14=\(\dfrac{140}{13}\)
b=\(\dfrac{10}{13}\).4=\(\dfrac{40}{13}\)
c=\(\dfrac{10}{13}\).5=\(\dfrac{50}{13}\)
Vậy.....
chúc bạn học tốt
\(A=\dfrac{ab+10b+25}{ab+5a+5b+25}+\dfrac{bc+10c+25}{bc+5b+5c+25}+\dfrac{ca+10a+25}{ac+5a+5c+25}\)
\(=\dfrac{\left(ab+5b\right)+\left(5b+25\right)}{\left(ab+5a\right)+\left(5b+25\right)}+\dfrac{\left(bc+5c\right)+\left(5c+25\right)}{\left(bc+5b\right)+\left(5c+25\right)}+\dfrac{\left(ca+5a\right)+\left(5a+25\right)}{\left(ac+5a\right)+\left(5c+25\right)}\)
\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{a\left(c+5\right)+5\left(c+5\right)}\)
\(=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)
\(=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)
\(=\left(\dfrac{b}{b+5}+\dfrac{5}{b+5}\right)+\left(\dfrac{a}{a+5}+\dfrac{5}{a+5}\right)+\left(\dfrac{c}{c+5}+\dfrac{5}{c+5}\right)\)
\(=1+1+1=3\) (\(a;b;c\ne-5\))
\(A=\dfrac{ab+5b+5b+25}{a\left(b+5\right)+5\left(b+5\right)}+\dfrac{bc+5c+5c+25}{b\left(c+5\right)+5\left(c+5\right)}+\dfrac{ca+5a+5a+25}{a\left(c+5\right)+5\left(c+5\right)}\)
\(A=\dfrac{b\left(a+5\right)+5\left(b+5\right)}{\left(a+5\right)\left(b+5\right)}+\dfrac{c\left(b+5\right)+5\left(c+5\right)}{\left(b+5\right)\left(c+5\right)}+\dfrac{a\left(c+5\right)+5\left(a+5\right)}{\left(a+5\right)\left(c+5\right)}\)
\(A=\dfrac{b}{b+5}+\dfrac{5}{a+5}+\dfrac{c}{c+5}+\dfrac{5}{b+5}+\dfrac{a}{a+5}+\dfrac{5}{c+5}\)
\(A=\dfrac{a+5}{a+5}+\dfrac{b+5}{b+5}+\dfrac{c+5}{c+5}=1+1+1=3\)
Đặt 2a/5b=5b/6c=6c/7d=7d/2a=k
=> k^4=2a/5b.5b/6c.6c/7d.7d/2a=1
=>k=1 hoặc k=-1
Với k=1 thì B=4
Với k=-1 thì B=-4
Vậy B=4 hoặc B=-4
Áp dụng dãy tỉ số bằng nhau => \(\frac{2a}{5b}=\frac{5b}{6c}=\frac{6c}{7d}=\frac{7d}{2a}=\frac{2a+5b+6c+7d}{5b+6c+7d+2a}=1\)
=> \(B=1+1+1+1=4\)
Các bạn giúp ,mình gâp nhé
Các bạn ghi cả lời giải cho mình nhé
4a=5b=7c va a-b+c=54
\(4a=5b=7c\Rightarrow4a=5b;5b=7c\Rightarrow\frac{a}{5}=\frac{b}{4};\frac{b}{7}=\frac{c}{5}\Rightarrow\frac{a}{5}=\frac{7b}{28};\frac{4b}{28}=\frac{c}{5}\Rightarrow\frac{a}{35}=\frac{b}{28}=\frac{c}{20}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{a}{35}=\frac{b}{28}=\frac{c}{20}=\frac{a-b+c}{35-28+20}=\frac{54}{27}=2\)
Suy ra : \(\frac{a}{35}=2\Rightarrow a=2.35=70\)
\(\frac{b}{28}=2\Rightarrow b=2.28=56\)
\(\frac{c}{20}=2\Rightarrow c=2.20=40\)
Ta có: 4a= 5b=7c
=> \(\frac{4a}{140}=\frac{5b}{140}=\frac{7c}{140}\)
Hay:\(\frac{a}{35}=\frac{b}{28}=\frac{c}{20}\)
áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{35}=\frac{b}{28}=\frac{c}{20}\)=\(\frac{a-b+c}{35-28+20}=\frac{54}{27}=2\)
=>\(\frac{a}{35}=2\)
\(\frac{b}{28}=2\)
\(\frac{c}{20}=2\)
=> a = 70
b = 56
c=40
bạn kiểm tra lại giúp mình với nha
\(10a=15b=6c\)
\(\Rightarrow\frac{10a}{1}=\frac{5b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}\)
Áp dụng t/c dãy tỉ số bằng nhau, ta có:
\(\frac{10a}{1}=\frac{5b}{\frac{1}{3}}=\frac{c}{\frac{1}{6}}=\frac{10a-5b+c}{1-\frac{1}{3}+\frac{1}{6}}=\frac{25}{\frac{5}{6}}=30\)
\(\Rightarrow\hept{\begin{cases}a=30:10=3\\b=10:5=2\\c=30:6=5\end{cases}}\)
Vậy a = 3, b = 2, c = 5
#)Giải :
Ta có : \(10a=15b\Rightarrow\frac{a}{15}=\frac{b}{10}\Rightarrow\frac{a}{90}=\frac{b}{60}\)
\(15b=6c\Rightarrow\frac{b}{6}=\frac{c}{15}\Rightarrow\frac{b}{60}=\frac{c}{150}\)
\(\Rightarrow\frac{a}{90}=\frac{b}{60}=\frac{c}{150}\)
Áp dụng tính chất dãy tỉ số bằng nhau :
\(\frac{a}{90}=\frac{b}{60}=\frac{c}{150}=\frac{10a-5b+c}{900-300+150}=\frac{25}{750}=\frac{1}{30}\)
\(\Rightarrow\frac{a}{90}=\frac{1}{30}\Rightarrow a=3\)
\(\Rightarrow\frac{b}{60}=\frac{1}{30}\Rightarrow b=2\)
\(\Rightarrow\frac{c}{150}=\frac{1}{30}\Rightarrow c=5\)