Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt \(\frac{2a}{5b}=\frac{5b}{6c}=\frac{6c}{7d}=\frac{7d}{2a}=k\)
\(\frac{2a}{5b}.\frac{5b}{6c}.\frac{6c}{7d}.\frac{7d}{2a}=\frac{2a.5b.6c.7d}{5b.6c.7d.2a}=1=k^4\)
\(\Rightarrow k\in\left\{-1;1\right\}\)
\(\frac{2a}{5b}>\frac{0}{5b}=0\Rightarrow k=1\)
vậy \(A=\frac{2a}{5b}+\frac{5b}{6c}+\frac{6c}{7d}+\frac{7d}{2a}=4k=4.1=4\)
Đặt 2a/5b=5b/6c=6c/7d=7d/2a=k
=> k^4=2a/5b.5b/6c.6c/7d.7d/2a=1
=>k=1 hoặc k=-1
Với k=1 thì B=4
Với k=-1 thì B=-4
Vậy B=4 hoặc B=-4
Bài này chắc phải giải theo kiểu lớp 7
Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{2a}{3b}=\dfrac{3b}{4c}=\dfrac{4c}{5d}=\dfrac{5d}{2a}=\dfrac{2a+3b+4c+5d}{3b+4c+5d+2a}=1\)
\(\Rightarrow\left\{{}\begin{matrix}2a=3b\\3b=4c\\4c=5d\\5d=2a\end{matrix}\right.\)\(\Rightarrow2a=3b=4c=5d\)
\(\Rightarrow C=\dfrac{2a}{3b}+\dfrac{3b}{4c}+\dfrac{4c}{5d}+\dfrac{5d}{2a}\)
\(=\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}+\dfrac{2a}{2a}\)
\(=1+1+1+1\)
\(=4\)
Vậy \(C=4\)
\(\frac{2a}{a+b}+\frac{b}{a-b}=2< =>2\left(a-b\right)a+b\left(a+b\right)=2\left(a-b\right)\left(a+b\right).\)
\(< =>2a^2-2ab+ab+b^2=2a^2-2b^2\)
\(< =>3b^2-ab=0< =>b\left(3b-a\right)=0=>\orbr{\begin{cases}b=0\\3b-a=0\end{cases}}\)\(< =>\orbr{\begin{cases}b=0\\a=3b\end{cases}=>\orbr{\begin{cases}A=3\\A=1\end{cases}}}\)
Đặt 2a/5b=5b/6c=6c/7d=7d/2a=k
=> k^4=2a/5b.5b/6c.6c/7d.7d/2a=1
=>k=1 hoặc k=-1
Với k=1 thì B=4
Với k=-1 thì B=-4
Vậy B=4 hoặc B=-4