Bài 1 : Giải các phương trình sau: x\(\sqrt{x^2+16}+x^2\)=24 ; \(\sqrt{x-y}=3-\left(\sqrt{x-y-9}\right)^2\)
Bài 2 : Tìm Min A, biết A= \(\frac{a^2}{b-1}+\frac{b^2}{a-1}\left(a,b>1\right)\)
Bài 3: Cho M = \( \left( \sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}\right)\): \(\left|\frac{4-x}{x}\right|\)
Đặt a - 1 = x > 0; b - 1 = y > 0
\(A=\frac{\left(x+1\right)^2}{x}+\frac{\left(y+1\right)^2}{y}\\ A=\frac{x^2+2x+1}{x}+\frac{y^2+2y+1}{y}\\ A=\left(x+\frac{1}{x}\right)+\left(y+\frac{1}{y}\right)+4\)
Với x > 0; y > 0, theo BĐT AM-GM ta có:
\(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}\Rightarrow x+\frac{1}{x}\ge2\)
\(y+\frac{1}{y}\ge2\sqrt{y.\frac{1}{y}}\Rightarrow y+\frac{1}{y}\ge2\)
\(\Rightarrow A\ge8\)
Dấu "=" xảy ra khi và chỉ khi x = y = 1 => a = b = 2
Vậy...