Cho tam giác ABC và tam giác DBC vuông tại A và D ( A và D nằm khác phía so với bờ là đường thẳng BC ). Gọi H,K lần lượt là hình chiếu vuông góc của B và C xuống AD. Chứng minh rằng AH = DK.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
22 tháng 6 2019
Em tham khảo ở link: Câu hỏi của Thư Anh Nguyễn - Toán lớp 8 - Học toán với OnlineMath
29 tháng 7 2020
vẽ AE _|_ CD tại E, gọi M là giao điểm của AE và CK
\(\Delta\)ADC có CK,AE ;à hai đường cao cắt nhau tại M
=> M là trực tâm tam giác ADC
=> DM_|_AC, AB _|_AC => AB//DM(đpcm)
\(\Delta\)ADB=\(\Delta\)DAM (g.c.g) => AB=DM
\(\Delta\)HAB=\(\Delta\)KDM (cạnh huyền-góc nhọn) => AH=DK (đpcm)
Xét tam giác AHB và tam giác CKA có:
\(\widehat{AHB}=\widehat{CKA}=90^o\)
\(\widehat{A_1}=\widehat{B_1}\)( cùng phụ \(\widehat{A_2}\))
=> \(\Delta AHB~\Delta CKA\)
=> \(\frac{AH}{CK}=\frac{HB}{KA}\Rightarrow AH.KA=HB.CK\) (1)
Xét \(\Delta CKD\) và \(\Delta DHB\)
có: \(\widehat{DHB}=\widehat{CKD}=90^o\)
\(\widehat{D_1}=\widehat{C_1}\)( cùng phụ \(\widehat{D_2}\))
=> \(\Delta CKD~\Delta DHB\)
=> \(\frac{CK}{DH}=\frac{KD}{HB}\Rightarrow KD.DH=CK.HB\)(2)
Từ (1) , (2)
=> \(KD.DH=AH.KA\)
=> \(\frac{KD}{AH}=\frac{KA}{DH}=\frac{KD+KA}{AH+HD}=\frac{AD}{AD}=1\)
=> KD=AH