hãy chứng minh
cho b,d>0. Nếu a/b <c/d thì a/b < a+c/b+d<c/d
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) + Nếu a/b > 1 thì a/b > b/b => a > b
+ Nếu a > b thì a/b > b/b => a/b > 1 (đpcm)
b) + Nếu a/b < 1 thì a/b < b/b => a < b
+ Nếu a < b thì a/b < b/b => a/b < 1 (đpcm)
Bài 2:
Do \(\frac{a}{b}>\frac{c}{d}\)
\(\Rightarrow\frac{a}{b}.\frac{d}{c}< \frac{c}{d}.\frac{d}{c}\)
=> \(\frac{a.d}{b.c}< 1\Rightarrow a.d< b.c\left(đpcm\right)\)
bai2
vi a/b > c/d
=>ad/bd >cd/bd
và ad/bd , cd/bd có mẫu chung là bd
<=>ad>cd
Ta có:a/b<c/d =>ad<bc (1)
Thêm ab vào (1) ta đc:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (1), ta lại có:
ad+cd<bc+cd hay d(a+c)<c(b+d) => c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d
a) Từ a/b=c/d (a≠b≠c≠d≠0)
=> a*d=b*c
=> a*c-a*d= a*c-b*c
=> a*(c-d)=c*(a-b)
=> a/a-b=c/c-d (đpcm)
b) Từ a/b=c/d (a≠b≠c≠d≠0)
=> a*d=b*c
=a*d+b*d=b*c+b*d
=> d*(a+b)=b*(c+d)
=> a+b/b=c+d/d (đpcm)
Bạn tham khảo câu hỏi tương tự ở đây nha:
Câu hỏi của thanh dung - Toán lớp 7 - Học toán với OnlineMath
Chúc bạn học tốt~