Cho \(\left(x+\sqrt{x^2+2013}\right)\left(y+\sqrt{y^2+2013}\right)=2013\) . Tính P = x+y
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
Dễ dàng nhận ra \(x-\sqrt{x^2+2013}\ne0\), nhân 2 vế với nó:
\(\Leftrightarrow-2013\left(y+\sqrt{y^2+2013}\right)=2013\left(x-\sqrt{x^2+2013}\right)\)
\(\Leftrightarrow y+\sqrt{y^2+2013}=\sqrt{x^2+2013}-x\)
Tương tự ta có \(x+\sqrt{x^2+2013}=\sqrt{y^2+2013}-y\)
Cộng vế với vế:
\(x+y+\sqrt{x^2+2013}+\sqrt{y^2+2013}=\sqrt{x^2+2013}+\sqrt{y^2+2013}-x-y\)
\(\Rightarrow2\left(x+y\right)=0\Rightarrow P=0\)