K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 6 2019

\(A=\frac{1}{2}+\frac{2}{2^2}+\frac{3}{2^2}+....+\frac{100}{2^{100}}\)

\(\Rightarrow2A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}\)

\(\Rightarrow2A-A=1+\frac{2}{2}+\frac{3}{2^2}+...+\frac{100}{2^{99}}-\frac{1}{2}-\frac{2}{2^2}-...-\frac{100}{2^{100}}\)

\(\Rightarrow A=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}-\frac{100}{2^{100}}\)

\(\Rightarrow A< 1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(3)

Đặt \(P=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)(2)

\(\Rightarrow2P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}\)

\(\Rightarrow2P-P=2+1+\frac{1}{2}+...+\frac{1}{2^{98}}-1-\frac{1}{2}-...-\frac{1}{2^{99}}\)

\(\Rightarrow P=2-\frac{1}{2^{99}}< 2\)(1)

Từ (1),(2),(3) => A<2

17 tháng 6 2019

Giải

Ta có A =1/2 +  2/2^2 + 3/2^3 + ... + 100/2^100

=> 2A = 1 + 2/2 + 3/2^2 + ... + 100/2^99

=> 2A - A = 1 + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 - 100/2^100

=> A = ( 1 - 100/2^100) + 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99 (*)

Đặt B = 1/2 + 1/2^2 + 1/2^3 + ... + 1/2^99

=> 2B = 1 + 1/2 + 1/2^2 + ... + 1/2^98

=> 2B - B = 1 - 1/2^99

=> B = 1 - 1/2^99

Thay B vào (*) ta được:

A = ( 1 - 100/2^100 ) + ( 1 - 1/2^99 )

A = 2 - ( 100/2^100 + 1/2^99 ) < 2

=> A < 2 (đpcm)

21 tháng 12 2021

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\\ A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\\ A=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\\ A=6\left(1+2^2+...+2^{98}\right)⋮6\)

18 tháng 10 2021

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

18 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2\right)+...+2^{98}\left(2+2^2\right)\)

\(=\left(2+2^2\right)\left(1+2^2+...+2^{98}\right)\)

\(=6\left(1+2^2+...+2^{98}\right)\)⋮6

⇒ A⋮6

9 tháng 11 2021

\(A=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+2^2.6+...+2^{98}.6=6\left(1+2^2+...+2^{98}\right)⋮6\)

16 tháng 10 2021

\(A=2+2^2+2^3+...+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6+6.2^2+...+6.2^{98}\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

22 tháng 10 2021

\(A=2+2^2+2^3+2^4+...+2^{100}\)

\(=2\cdot3+2^3\cdot3+...+2^{99}\cdot3\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

2 tháng 11 2022

cho mình hỏi tại sao bạn lại nhân với 3

 

A=(2+2^2+2^3+2^4)+2^4(2+2^2+2^3+2^4)+...+2^96(2+2^2+2^3+2^4)

=30(1+2^4+...+2^96) chia hết cho 10

28 tháng 10 2023

\(A=2+2^2+2^3+2^4+...+2^{99}+2^{100}\)

\(=\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^{98}\left(2+2^2\right)\)

\(=6\left(1+2^2+...+2^{98}\right)⋮6\)

28 tháng 10 2023

ok bạn

 

AH
Akai Haruma
Giáo viên
13 tháng 12 2021

Lời giải:
$A=(2+2^2)+(2^3+2^4)+....+(2^{99}+2^{100})$
$=2(1+2)+2^3(1+2)+...+2^{99}(1+2)$

$=2.3+2^3.3+...+2^{99}.3$

$=3(2+2^3+...+2^{99})\vdots 3$

Ta có đpcm.