So sánh 2 và căn 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}>2^2=4\left(5>4\right)\\ \Leftrightarrow\sqrt{2}+\sqrt{3}>2\)
1: \(8^2=64=22+32=22+2\cdot16=22+2\cdot\sqrt{256}\)
\(\left(\sqrt{8}+\sqrt{14}\right)^2=22+2\cdot\sqrt{112}\)
mà \(16>\sqrt{112}\)
nên 8^2>(căn 8+căn 14)^2
=>8>căn 8+căn 14
2: \(\left(2+\sqrt{3}\right)^2=7+4\sqrt{3}\)
\(\left(3+\sqrt{2}\right)^2=11+6\sqrt{2}\)
mà 7<11 và 4căn 3<6căn 2(48<72)
nên (2+căn 3)^2<(3+căn 2)^2
=>2+căn 3<3+căn 2
b: \(\sqrt{\dfrac{3}{2}}>\sqrt{\dfrac{2}{2}}=1\)
a: \(\left(2\sqrt{5}-3\sqrt{2}\right)^2=38-12\sqrt{10}=1+37-12\sqrt{10}\)
\(1^2=1\)
mà \(37-12\sqrt{10}< 0\)
nên \(2\sqrt{5}-3\sqrt{2}< 1\)
Lời giải:
$\sqrt{3}+5> \sqrt{1}+5=6$
$\sqrt{2}+\sqrt{11}< \sqrt{4}+\sqrt{16}=6$
$\Rightarrow \sqrt{3}+5> \sqrt{2}+\sqrt{11}$
\(B=\frac{2-\sqrt{2+\sqrt{2+\sqrt{2}}}}{2-\sqrt{2+\sqrt{2}}}=\frac{2^2-\left(\sqrt{2+\sqrt{2+\sqrt{2}}}\right)^2}{\left(2-\sqrt{2+\sqrt{2}}\right)\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)
\(=\frac{2-\sqrt{2+\sqrt{2}}}{\left(2-\sqrt{2+\sqrt{2}}\right)\left(2+\sqrt{2+\sqrt{2+\sqrt{2}}}\right)}\)
\(=\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}\)
Cho mình bổ sung nha, nãy bấm nhầm gửi lun
Xét \(\sqrt{2}< 2\Rightarrow2+\sqrt{2}< 4\Rightarrow\sqrt{2+\sqrt{2}}< 2\Rightarrow2+\sqrt{2+\sqrt{2}}< 4\)
\(\Rightarrow\sqrt{2+\sqrt{2+\sqrt{2}}}< 2\Rightarrow2+\sqrt{2+\sqrt{2+\sqrt{2}}}< 4\)
\(\Rightarrow\frac{1}{2+\sqrt{2+\sqrt{2+\sqrt{2}}}}>\frac{1}{4}\)
\(\Rightarrow B>\frac{1}{4}\)
1/ bình phương hai vế được (căn11)^2+(căn5)^2=11+5 4^2=16 vậy căn 11+căn 5=4
2/ tương tự (3 căn3 )^2=27 (căn19)^2-(căn 2)^2=19-2=17 vậy 3 căn 3 >căn 19-căn2
\(\left(5-2\sqrt{7}\right)^2=53-20\sqrt{7}=19+34-20\sqrt{7}\)
\(\left(3-\sqrt{10}\right)^2=19-6\sqrt{10}\)
mà \(34-20\sqrt{7}>-6\sqrt{10}\)
nên \(5-2\sqrt{7}>3-\sqrt{10}\)
tại sao phần 34-20√7 lại lớn hơn 6√10(ý mình ở đây là bạn giải thích lại giúp mình là vì sao nó lại thế)
\(2>\sqrt{2}\)
trả lời
\(2\)\(>\)\(\sqrt{2}\)
chúc bn
hc tốt