cho \(f\left(x\right)=ax^2+bx+c>0\) với mọi x và a,b,c nguyên dương (b khác 1)
CMR \(\frac{3350a+1340c+4ac+2b+1}{b}>2014\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giải thiết :\(f\left(x\right)=ax^2+bx+c>0\Rightarrow\Delta< 0\Leftrightarrow4ac>b^2.\left(1\right)\)(bạn đọc ở chuyên đề Dấu tam thức bậc hai có cái này)
Với a,b,c nguyên dương (b khác 1)
Áp dụng bất đẳng thức AM-GM cho 2 số không âm ta có:
\(3350a+1340c\ge2\sqrt{3350a.1340c}=2\sqrt{335^2.10.4ac}\)
Kết hợp với (1) suy ra:
\(3350a+1340a\ge2.335.\sqrt{b^2.10}>2.335.3.b=2010b.\)
\(\Rightarrow3350a+1340c+2b+1>2012b+1\)
\(\Rightarrow3350a+1340c+4ac+2b+1>b^2+2012b+1\)
\(\Rightarrow\frac{3350a+1340b+4ac+2b+1}{b}>b+2012+\frac{1}{b}\)
Mà \(b+\frac{1}{b}\ge2\sqrt{b.\frac{1}{b}}=2\Rightarrow b+2012+\frac{1}{b}\ge2014.\)
Suy ra \(\frac{3350a+1340c+4ac+2b+1}{b}>2014.\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Linh nè - Toán lớp 9 | Học trực tuyến
Ta có \(f\left(x\right)=ax^2+bx+c>0\forall x\)
\(\Rightarrow f\left(-2\right)>0\Rightarrow4a-2b+c>0\Rightarrow4a+c>2b\)(*)
Ta có f(x)=ax2+bx+c >0 với mọi x
=> f(-1) >0 => a-b+c>0 => a+c >b (**)
Từ (*) (**) => 5a+2c > 3b => \(\frac{5a+2c}{b}>3\left(b>0\right)\)
\(\Rightarrow\frac{3350a+1340c}{b}>2010\)(***)
Mặt khác ta lại có:
f(x)=ax2+bx+c>0 với mọi x
=> b2<4ac (vì a>0) => 4ac>b2
\(\Leftrightarrow\frac{4ac}{b}>b\Leftrightarrow\frac{4ac}{b}+\frac{1}{b}>b+\frac{1}{b}\ge2\)(Theo BĐT Cosi), mà 0<b\(\ne\)1
=> \(\frac{4ac}{b}+\frac{1}{b}>2\)(****)
Từ (***)(****) \(\Rightarrow\frac{3350+1340c}{b}+\frac{4ac+1}{b}>2012\)
\(\Leftrightarrow\frac{3350+1340c+4ac+2b+1}{b}>2014\left(đpcm\right)\)
f(x)>0 với mọi x khi và chỉ khi: \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}b^2-4ac< 0\\a>0\end{matrix}\right.\)
Lời giải:
a.
$f(-1)=a-b+c$
$f(-4)=16a-4b+c$
$\Rightarrow f(-4)-6f(-1)=16a-4b+c-6(a-b+c)=10a+2b-5c=0$
$\Rightarrow f(-4)=6f(-1)$
$\Rightarrow f(-1)f(-4)=f(-1).6f(-1)=6[f(-1)]^2\geq 0$ (đpcm)
b.
$f(-2)=4a-2b+c$
$f(3)=9a+3b+c$
$\Rightarrow f(-2)+f(3)=13a+b+2c=0$
$\Rightarrow f(-2)=-f(3)$
$\Rightarrow f(-2)f(3)=-[f(3)]^2\leq 0$ (đpcm)
a.
�
(
−
1
)
=
�
−
�
+
�
f(−1)=a−b+c
�
(
−
4
)
=
16
�
−
4
�
+
�
f(−4)=16a−4b+c
⇒
�
(
−
4
)
−
6
�
(
−
1
)
=
16
�
−
4
�
+
�
−
6
(
�
−
�
+
�
)
=
10
�
+
2
�
−
5
�
=
0
⇒f(−4)−6f(−1)=16a−4b+c−6(a−b+c)=10a+2b−5c=0
⇒
�
(
−
4
)
=
6
�
(
−
1
)
⇒f(−4)=6f(−1)
⇒
�
(
−
1
)
�
(
−
4
)
=
�
(
−
1
)
.
6
�
(
−
1
)
=
6
[
�
(
−
1
)
]
2
≥
0
⇒f(−1)f(−4)=f(−1).6f(−1)=6[f(−1)]
2
≥0 (đpcm)
b.
�
(
−
2
)
=
4
�
−
2
�
+
�
f(−2)=4a−2b+c
�
(
3
)
=
9
�
+
3
�
+
�
f(3)=9a+3b+c
⇒
�
(
−
2
)
+
�
(
3
)
=
13
�
+
�
+
2
�
=
0
⇒f(−2)+f(3)=13a+b+2c=0
⇒
�
(
−
2
)
=
−
�
(
3
)
⇒f(−2)=−f(3)
⇒
�
(
−
2
)
�
(
3
)
=
−
[
�
(
3
)
]
2
≤
0
⇒f(−2)f(3)=−[f(3)]
2
≤0 (đpcm
2/ \(3\sqrt[3]{\left(x+y\right)^4\left(y+z\right)^4\left(z+x\right)^4}=3\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\)
\(\ge6\left(x+y\right)\left(y+z\right)\left(z+x\right)\sqrt[3]{xyz}\)
\(\ge6.\frac{8}{9}\left(x+y+z\right)\left(xy+yz+zx\right)\sqrt[3]{xyz}\)
\(\ge\frac{16}{3}\left(x+y+z\right)3\sqrt[3]{x^2y^2z^2}\sqrt[3]{xyz}=16xyz\left(x+y+z\right)\)
3/ \(\hept{\begin{cases}\sqrt{xy}+\sqrt{1-x}\le\sqrt{x}\\2\sqrt{xy-x}+\sqrt{x}=1\end{cases}}\)
Dễ thấy
\(\hept{\begin{cases}0\le x\le1\\y\ge1\end{cases}}\)
Từ phương trình đầu ta có:
\(\sqrt{x}-\sqrt{xy}\ge\sqrt{1-x}\ge0\)
\(\Leftrightarrow y\le1\)
Vậy \(x=y=1\)
Áp dụng công thức: (m – n). ( m+ n) = m2 – n2 => m2 – n2 chia hết (m – n)
Ta có : f(x)=ax2- bx + c
=> Tính chất: f (m) – f(n) chia hết ( m – n)
Ta có:
f(104) – f(9) chia hết 105
=> f(104) – f(9) chia hết 5
=> f(104) chia hết 5
Mặt khác:
f(104) – f(5) chia hết 99
=> f(104) – f(5) chia hết 9
=> f(104) chia hết 9
Vậy f(104) chia hết (5.9) = 45
Lời giải:
Điều cần chứng minh tương đương với:
\(3350a+1340c+4ac+2b+1>2014b\)
\(\Leftrightarrow 670(5a-3b+2c)+(4ac-2b+1)>0(*)\)
Vì $f(x)>0$ với mọi $x$ nên $f(x)=0$ không có nghiệm $\Rightarrow \Delta'=b^2-4ac< 0$
$\Rightarrow b^2< 4ac\Rightarrow 4ac-2b+1> b^2-2b+1=(b-1)^2>0(1)$ với mọi $b\neq 1$
Lại có:
$f(-1)>0; f(-2)>0$
$\Rightarrow f(-1)+f(-2)>0$
$\Leftrightarrow a-b+c+4a-2b+c>0\Leftrightarrow 5a-3b+2c>0(2)$
Từ $(1);(2)\Rightarrow (*)$ đúng. Ta có đpcm.