Cho đa thức Q(x) = \(x^3\)- 9x
Kiểm nghiệm rằng đa thức Q(x) có ba nghiệm x = -3,0,3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: P(-1)=2
=>-m-3=2
=>-m=5
=>m=-5
c: P(0)=0-3=-3
P(-1)=4-3=1
b: Q(1)=0
=>-2+m-7m+3=0
=>-6m+1=0
=>m=1/6
a: Ta có: \(P=x^5-3x^2+7x^4-9x^3+x^2-\dfrac{1}{4}x\)
\(=x^5+7x^4-9x^3-2x^2-\dfrac{1}{4}x\)
Ta có: \(Q=5x^4-x^5+x^2-2x^3+3x^2-\dfrac{1}{4}\)
\(=-x^5+5x^4-2x^3+4x^2-\dfrac{1}{4}\)
a, Ta có;P(-1)=2
<=>-m-3=2<=>=-m=2+3=5=>m=-5 .Vậy m =-5
b,Ta có;Q(-1)=0
<=>-2*(-1)^2+M*(-1)-7*(-1)+3=0
<=>-2-m+7+3=0
<=>-m-3-7+2=-8
<=>m=8 Vậy m =8
Ta có: Q(-3) =\(\text{ (-3)}^3-9-\left(-3\right)=-27+27\)=0
Suy ra x = -3 là một nghiệm của đa thức Q(x).
Q(0)= 0 - 0 = 0
Suy ra x = 0 là một nghiệm của đa thức Q(x).
Q(3)=\(3^3-9-3=27-27=0\)
Suy ra x = 3 là một nghiệm của đa thức Q(x)
Cách 1 \(Q_x=x^3-9=x\left(x^2-9\right)=x\left(x-3\right)\left(x+3\right)\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}\)
Cách 2 : Thay x = -3 vào đa thức ta có :
\(Q_{-3}=\left(-3\right)^2-9\left(-3\right)=-27+27=0\)
Thay x = 0 vào đa thức , ta có :
\(Q_0=0^3-9.0=0\)
Thay x = 3 vào đa thức , ta có :
\(Q_3=3^3-9.3=27-27=0\)
Vậy đa thức có 3 nghiệm là 0 ; -3 ; 3