K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 6 2019

Gọi đường thẳng là d

Câu a tự xử

Ý tìm giao điểm A; B tự xử

Gọi phương trình đường thẳng d' qua gốc tọa độ và vuông góc d có dạng \(y=kx\)

Do \(d\perp d'\Rightarrow k.1=-1\Rightarrow k=-1\)

\(\Rightarrow\) Phương trình d': \(y=-x\)

Tọa độ H là nghiệm của hệ: \(\left\{{}\begin{matrix}y=-x\\y=x-2m-1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=m+\frac{1}{2}\\y=-m-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow H\left(m+\frac{1}{2};-m-\frac{1}{2}\right)\)

\(OH^2=\left(m+\frac{1}{2}\right)^2+\left(-m-\frac{1}{2}\right)^2=\left(\frac{\sqrt{2}}{2}\right)^2\)

\(\Leftrightarrow2\left(m+\frac{1}{2}\right)^2=\frac{1}{2}\Rightarrow\left(m+\frac{1}{2}\right)^2=\frac{1}{4}\)

\(\Rightarrow\left[{}\begin{matrix}m+\frac{1}{2}=\frac{1}{2}\\m+\frac{1}{2}=-\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m=0\\m=-1\end{matrix}\right.\)

c/ \(A\left(2m+1;0\right)\) ; \(B\left(0;-2m-1\right)\) \(\Rightarrow I\left(m+\frac{1}{2};-m-\frac{1}{2}\right)\)

\(\Rightarrow x_I+y_I=0\Rightarrow I\) thuộc đường thẳng \(x+y=0\Leftrightarrow y=-x\)

14 tháng 6 2019

DƯƠNG PHAN KHÁNH DƯƠNG Nguyễn Thị Linh Chi Nguyễn Thị Ngọc Thơ

19 tháng 6 2019

1, \(x=13-4\sqrt{10}=\frac{26-8\sqrt{10}}{2}=\frac{10-2.4.\sqrt{10}+16}{2}=\frac{\left(\sqrt{10}-4\right)^2}{2}\)

Ta có: \(Q=x+\sqrt{5x}-2\sqrt{2x}-2\sqrt{10}\)

\(=\sqrt{x}\left(\sqrt{x}+\sqrt{5}\right)-2\sqrt{2}\left(\sqrt{x}+\sqrt{5}\right)\)

\(=\left(\sqrt{x}+\sqrt{5}\right)\left(\sqrt{x}-2\sqrt{2}\right)\)

\(=\left(\frac{4-\sqrt{10}}{\sqrt{2}}+\sqrt{5}\right)\left(\frac{4-\sqrt{10}}{\sqrt{2}}-2\sqrt{2}\right)\)

\(=\left(2\sqrt{2}-\sqrt{5}+\sqrt{5}\right)\left(2\sqrt{2}-\sqrt{5}-2\sqrt{2}\right)\)

\(=2\sqrt{2}.\left(-\sqrt{5}\right)=-2\sqrt{10}\)

19 tháng 6 2019

2, a,  Để đồ thị h/s  đi qua gốc tọa độ thì x=y=0

Ta có: \(-2m-1=0\Leftrightarrow m=\frac{-1}{2}\)

b, giao điểm của h/s y=x-2m-1 với trục hoành A(2m+1;0) với trục tung B(0;-2m-1)

Có: OA=2m+1; OB=|-2m-1|=2m+1

Áp dụng hệ thức lượng trong tam giác vuông coS:

\(\frac{1}{OH^2}=\frac{1}{OA^2}+\frac{1}{OB^2}=\frac{1}{\left(2m+1\right)^2}+\frac{1}{\left(2m+1\right)^2}=\frac{2}{\left(2m+1\right)^2}\)

\(\Leftrightarrow\frac{\left(2m+1\right)^2}{2}=\left(\frac{\sqrt{2}}{2}\right)^2=\frac{1}{2}\)

\(\Leftrightarrow\left(2m+1\right)^2=1\Leftrightarrow\orbr{\begin{cases}2m+1=1\\2m+1=-1\end{cases}\Leftrightarrow\orbr{\begin{cases}m=0\\m=-1\end{cases}}}\)

c, Hoành độ trung điểm I của AB là: \(x_I=\frac{x_A+x_B}{2}=\frac{2m+1}{2}\)

Tung độ trung điểm I của AB: \(y_I=\frac{y_A+y_B}{2}=\frac{-\left(2m+1\right)}{2}\)

Ta có: \(y_I=-x_I\)=> quỹ tích trung điểm I của AB là đường thẳng y=-x

24 tháng 11 2023

a: Để hàm số nghịch biến trên R thì 2m-1<0

=>2m<1

=>\(m< \dfrac{1}{2}\)

b; Thay x=-1 và y=0 vào y=(2m-1)x+m-1, ta được:

\(\left(-1\right)\left(2m-1\right)+m-1=0\)

=>-2m+1+m-1=0

=>-m=0

=>m=0

c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:

\(1\left(2m-1\right)+m-1=4\)

=>2m-1+m-1=4

=>3m=6

=>m=2

Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)

=>3x-y+1=0

Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:

\(d\left(O;\left(d\right)\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)

21 tháng 11 2023

a: Thay x=0 và y=3 vào y=(m-1)x+m-5, ta được:

\(0\cdot\left(m-1\right)+m-5=3\)

=>m-5=3

=>m=8

b: Thay x=-1 và y=0 vào y=(m-1)x+m-5, ta được:

\(-\left(m-1\right)+m-5=0\)

=>-m+1+m-5=0

=>-4=0(vô lý)

c: Thay x=0 và y=0 vào y=(m-1)x+m-5, ta được:

\(0\left(m-1\right)+m-5=0\)

=>m-5=0

=>m=5

16 tháng 12 2023

a: Để hàm số y=(2m-1)x+m-1 nghịch biến trên R thì 2m-1<0

=>2m<1

=>\(m< \dfrac{1}{2}\)

b: Thay x=-1 và  y=0 vào y=(2m-1)x+m-1, ta được:

-(2m-1)+m-1=0

=>-2m+1+m-1=0

=>-m=0

=>m=0

c: Thay x=1 và y=4 vào y=(2m-1)x+m-1, ta được:

2m-1+m-1=4

=>3m-2=4

=>3m=6

=>m=2

Khi m=2 thì \(y=\left(2\cdot2-1\right)x+2-1=3x+1\)

vẽ đồ thị:

loading...

y=3x+1

=>3x-y+1=0

Khoảng cách từ O(0;0) đến đường thẳng 3x-y+1=0 là:

\(d\left(O;3x-y+1=0\right)=\dfrac{\left|0\cdot3+0\cdot\left(-1\right)+1\right|}{\sqrt{3^2+\left(-1\right)^2}}=\dfrac{1}{\sqrt{10}}\)

24 tháng 12 2021

\(a,\Leftrightarrow A\left(0;0\right)\in\left(d\right)\Leftrightarrow-2m+1=0\Leftrightarrow m=\dfrac{1}{2}\\ b,\Leftrightarrow x=3;y=4\Leftrightarrow3\left(m+1\right)-2m+1=4\\ \Leftrightarrow3m+3-2m+1=4\\ \Leftrightarrow m=0\Leftrightarrow\left(d\right):y=x+1\\ c,\text{PT hoành độ giao điểm: }x+1=-2x+4\Leftrightarrow x=1\Leftrightarrow y=2\Leftrightarrow B\left(1;2\right)\\ \text{Vậy }B\left(1;2\right)\text{ là giao 2 đths}\)