K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 6 2019

A B C D M

trên tia đối của MA lấy MD sao cho MA = MD 

xét tam giác CMD và tam giác BMA có : BM = MC do M là trung điểm của BC (gt)

góc AMB = góc CMD (đối đỉnh)

=> tam giác CMD = tam giác BMA (c-g-c)

=> CD = AB và góc CDM = góc MAB (đn)

mà góc CDM so le trong  với MAB

=> CD // AB (đl)

=> góc BAC = góc ACD (đl) 

mà góc BAC = 90 (gt)

=> góc BAC = góc ACD = 90

xét tam giác ABC và tam giác CDAcó : AC chung

CD = AB (cmt)

=> tam giác ABC = tam giác CDA (2cgv)

=> góc CDA = góc ABC mà góc CDA = góc DAB (cmt)

=> góc MAB = góc MBA (tcbc)

=> tam giác AMB cân tại M (đn)

=> MA = MB mà MB = BC/2 do M là trung điểm

=> MA = BC/2

25 tháng 5 2023

loading...  

a) ∆ABC vuông tại A

M là trung điểm BC

⇒ AM là đường trung tuyến ứng với cạnh huyền BC

⇒ AM = BM = CM = BC : 2

b) ∆ABC vuông tại A có ∠C = 30⁰

⇒ ∠B = 90⁰ - 30⁰ = 60⁰

Do AM = BM (cmt)

⇒ ∆ABM cân tại M

Lại có ∠ABM = ∠B = 60⁰

⇒ ∆ABM đều

⇒ AB = AM = BM = BC : 2

4 tháng 11 2016

GT: Δ ABC vuông tại A

BM = CM

D ϵ tia đối của tia MA sao cgo MA = MD

KL: AD = BC

\(AM=\frac{1}{2}BC\)

Ta có hình vẽ:

A B C M D

Nối đoạn BD

Xét Δ BMD và Δ CMA có:

BM = CM (gt)

BMD = CMA (đối đỉnh)

MD = MA (gt)

Do đó, Δ BMD = Δ CMA (c.g.c)

=> BD = AC (2 cạnh tương ứng) và BDM = MAC (2 góc tương ứng)

Mà BDM và MAC là 2 góc so le trong nên BD // AC

=> BAC + ABD = 180o (trong cùng phía)

=> 90o + ABD = 180o

=> ABD = 180o - 90o = 90o = BAC

Xét Δ ABD và Δ BAC có:

BD = AC (cmt)

ABD = BAC = 90o

AB là cạnh chung

Do đó, Δ ABD = Δ BAC (c.g.c)

=> AD = BC (2 cạnh tương ứng) (1)

Mà AM = MD = \(\frac{1}{2}AD\) (2)

Từ (1) và (2) => \(AM=\frac{1}{2}BC\left(đpcm\right)\)

4 tháng 11 2016

Tứ giác ABCD có M là trung điểm của BC và AD

=> Tứ giác ABCD là hình bình hành có góc A=900

=> Hình bình hành ABCD là hình chữ nhật.

=> AD=BC

=> AM=DM=BM=CM

Mà BM + MC = BC

=> AM= 1/2 BC

a: Gọi D là điểm đối xứng của A qua M

Xét tứ giác ABDC có 

M là trung điểm của đường chéo BC

M là trung điểm của đường chéo AD

Do đó: ABDC là hình bình hành

mà \(\widehat{CAB}=90^0\)

nên ABDC là hình chữ nhật

Suy ra: AD=BC

mà \(AM=\dfrac{1}{2}AD\)

nên \(AM=\dfrac{1}{2}BC\)

5 tháng 10 2023

Để chứng minh ΔMAB = ΔMAC, ta có thể sử dụng nguyên lý cắt giao. Vì AB = AC và M là trung điểm BC, nên ta có AM là đường trung trực của đoạn thẳng BC. Từ đó, ta có AM ⊥ BC. Vì AM là đường trung trực của đoạn thẳng BC, nên ta cũng có MB = MC. Như vậy, ta đã chứng minh được ΔMAB = ΔMAC.

Để chứng minh AM là tia phân giác của góc BAC, ta có thể sử dụng tính chất của tam giác cân. Vì AB = AC và AM là đường trung trực của đoạn thẳng BC, nên ta có AM là tia phân giác của góc BAC.

Để chứng minh AM ⊥ BC, ta đã chứng minh ở trên rồi. Vì AM là đường trung trực của đoạn thẳng BC, nên ta có AM ⊥ BC.